

Deep structure of proton

Oleksandr Zenaiev (Hamburg University, II. Institute for Theoretical Physics)

DESY Theory Workshop: Synergy Towards the Future Standard Model 26 Sep 2025

Perturbative and non-perturbative QCD

- Quantum Chromodynamics (QCD) governs the strong force: interaction of guarks and gluons that confines hadrons and forms "ordinary" baryon matter around us
- Solution of renormalization group equation at LO:

$$\alpha_{\mathcal{S}}(\mathbf{Q}^2) = \frac{\alpha_{\mathcal{S}}(\mu^2)}{1 + \alpha_{\mathcal{S}}(\mu^2)\beta_0 \ln(\frac{\mathbf{Q}^2}{\mu^2})} = \frac{1}{\beta_0 \ln(\frac{\mathbf{Q}^2}{\Lambda^2})}$$

$$\beta_0 = \frac{33-2N_f}{12\pi}$$
, $\Lambda \sim$ a few hundred of MeV

Standard Model of Elementary Particles

tau

neutrino

W boson

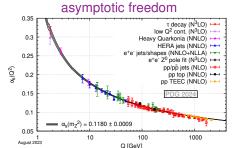
muon

neutrino

neutrino

Perturbative and non-perturbative QCD

- Quantum Chromodynamics (QCD) governs the strong force: interaction of quarks and gluons that confines hadrons and forms "ordinary" baryon matter around us
- Solution of renormalization group equation at LO:


$$\alpha_{\mathcal{S}}(\mathbf{Q}^2) = \tfrac{\alpha_{\mathcal{S}}(\mu^2)}{1 + \alpha_{\mathcal{S}}(\mu^2)\beta_0\ln(\tfrac{\mathbf{Q}^2}{\mu^2})} = \tfrac{1}{\beta_0\ln(\tfrac{\mathbf{Q}^2}{\Lambda^2})}$$

$$\beta_0 = \frac{33-2N_f}{12\pi}$$
, $\Lambda \sim$ a few hundred of MeV

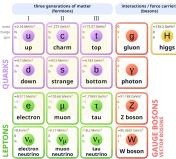
Standard Model of Elementary Particles

perturbative QCD at $Q \gtrsim 1$ GeV:

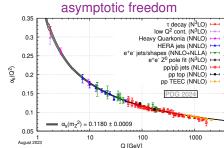
Perturbative and non-perturbative QCD

- Quantum Chromodynamics (QCD) governs the strong force: interaction of quarks and gluons that confines hadrons and forms "ordinary" baryon matter around us
- Solution of renormalization group equation at LO:

$$\alpha_{\mathcal{S}}\!\!\left(\mathbf{Q}^{\!2}\right) = \tfrac{\alpha_{\mathcal{S}}(\mu^2)}{1 + \alpha_{\mathcal{S}}(\mu^2)\beta_0\ln(\frac{Q^2}{\mu^2})} = \tfrac{1}{\beta_0\ln(\frac{Q^2}{\Lambda^2})}$$


$$\beta_0 = \frac{33-2N_f}{12\pi}$$
, $\Lambda \sim$ a few hundred of MeV

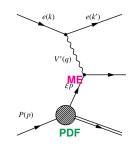
non-perturbative QCD: confinement

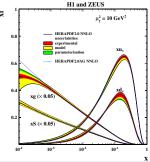

- if Q ≤ 1 GeV, perturbation theory is not applicable anymore: QCD potential grows linearly with larger distances
- no free quarks or gluons: hadrons are described by parton distribution functions

Standard Model of Elementary Particles

perturbative QCD at $Q \gtrsim 1$ GeV:

Global QCD analyses: PDFs, α_S ,... $\stackrel{\text{pQCD}}{\leftarrow} d\sigma/dO$

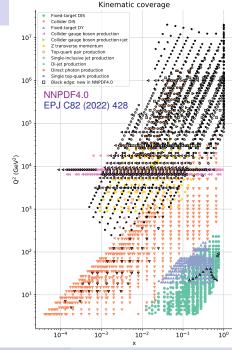




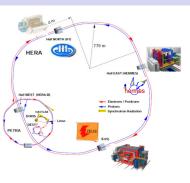
- Collinear factorization theorem: $\sigma = PDF \otimes ME$
- Parton distribution functions (PDFs) $f(x, \mu_f)$ describe distribution of quarks and gluons in hadrons
- Matrix elements (ME) are partonic cross sections calculated in pQCD $\sigma = \sum_{i=0}^{n} \sigma_i \alpha_S^i$ requiring $\alpha_S(\mu_r) < 1 \ (\mu_r \gg \Lambda_{QCD})$
- ◆ At low scales ~ 1 GeV non-perturbative QCD effects are parametrised by PDFs which are extracted using data
 - typically shaped like $x^a(1-x)^b$ with a few tens of parameters
- At higher scales > 1 GeV PDF evolution is predicted by pQCD
- \bullet $\alpha_S(M_Z)$, m_c , m_b , m_t are free parameters of SM
 - can be fitted or fixed in global QCD analyses

Challenges:

- choose suitable PDF parametrization
- select PDF sensitive and consistent data sets
- use appropriate statistical method (typically minimizing χ^2)
- most challenging are PDF uncertainties: very much depend on all above


Determination of PDFs

 PDFs are functions of energy scale (Q) and parton momentum fraction (x):


$$f_{q,q,\gamma,\dots}(Q^2,x)$$

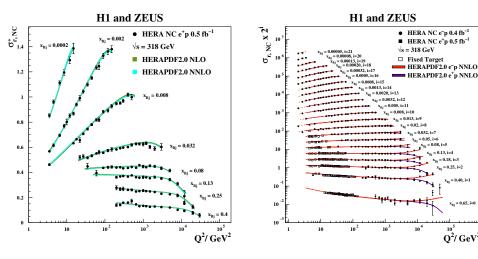
- assumed to be process independent (universal)
- NNLO QCD is state of the art
 - approximate N³LO fits started to appear
- Directly constrained by experimental data at $3 \lesssim Q^2 \lesssim 10^7 \text{ GeV}^2$, $10^{-4} \lesssim x \lesssim 1$
 - Q² dependence calculable in pQCD
 - extrapolation at $x \le 10^{-4}$ and $x \to 1$
- Various processes constrain various distributions and are sensitive to various SM parameters

process	constrain
ep(N) DIS	core of PDF determination
ep and pp jets	gluon PDF & $\alpha_{\mathcal{S}}$
pp t ī	gluon PDF & α_S , m_t
pp W, Z	q flavour separation
$pp p_T(Z)$	gluon PDF and $\alpha_{\mathcal{S}}$

ep Deep Inelastic Scattering $Q^2 \gtrsim 1 \ GeV^2$

$$Q^{2} = -q^{2} = -(e - e')^{2}$$

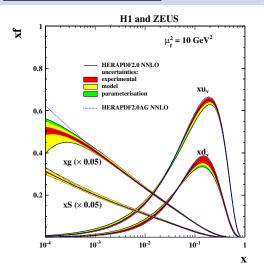
$$x_{Bj} = \frac{Q^{2}}{2q \cdot p}, y = \frac{q \cdot p}{q \cdot e}$$


$$s = (e + p)^{2}, Q^{2} = sx_{Bj}y$$

$$e(E_e,\bar{p}_e)$$

$$e'(E_{e'},\bar{p}_{e'})$$
 scattered lepton (inclusive measurements)
$$q$$
 hadronic final state (jets, heavy quarks, prompt photons)
$$p(E_p,\bar{p}_p)$$
 structure
$$p'(E_{p'},\bar{p}_{p'})$$

$$\begin{array}{l} \sigma_{\rm red}^{e^{\pm}\,p} = \frac{{\rm d}^2\sigma^{e^{\pm}p}}{{\rm d}x_{\rm Bj}{\rm d}Q^2} \cdot \frac{x_{\rm Bj}Q^4}{2\pi\alpha^2\,(1+(1-y)^2)} \\ = \\ F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2) \mp \frac{Y_-}{Y_+}xF_3(x,Q^2), \\ Y_\pm = 1 \pm (1-y)^2 \end{array}$$

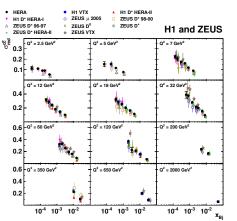

• At LO QCD, only γ exchange: $F_2(x,Q^2) = x \sum_q e_q^2 [f_q(x,Q^2) + f_{\bar{q}}(x,Q^2)], F_L = xF_3 = 0$ \rightarrow direct probe of quark PDFs

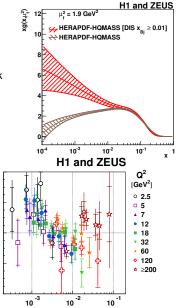
O. Zenaiev

- HERA data on ep DIS scattering are a backbone of all global QCD analyses
 - direct constraints on valence and sea quark PDFs in a wide kinematic range
 - ▶ however only indirect sensitivity to gluon PDF and $\alpha_{\mathcal{S}}$ (scaling violation and $F_{\mathcal{L}}$)

HERA DIS data H1&ZEUS, EPJ C 75 (2015) 580

- HERA data on ep DIS scattering are a backbone of all global QCD analyses
 - direct constraints on valence and sea quark PDFs in a wide kinematic range
 - ▶ however only indirect sensitivity to gluon PDF and α_S (scaling violation and F_L)

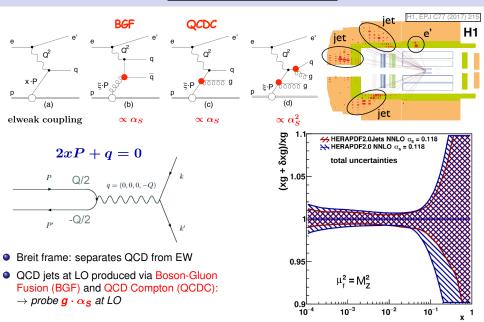

Charm and beauty at HERA H1&ZEUS, EPJ C78 (2018) 473


- Legacy data on charm and beauty production from HERA
- ullet Enable **precise** determination of m_c and m_b

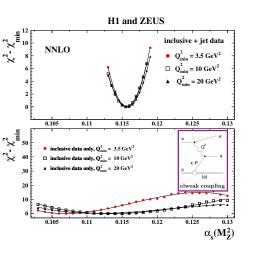
$$m_c(m_c) = 1290^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{mod})^{+3}_{-31}(\text{par}) \text{ MeV}$$

$$m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{mod})^{+1}_{-31}(\text{par}) \text{ MeV}$$

 Revealed tension in describing simultaneously heavy-quark and inclusive HERA data

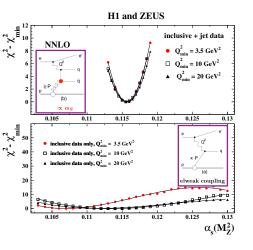

1.2

0.8


0.6

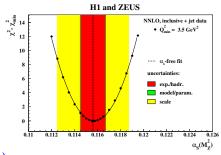
 $\langle \mathbf{x} \rangle$

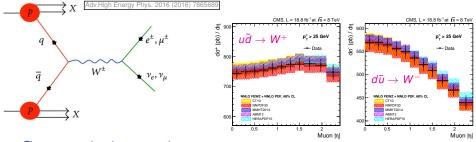
Jet production at HERA H1&ZEUS, EPJ C 82 (2022) 3, 243


Jet production at HERA H1&ZEUS, EPJ C 82 (2022) 3, 243

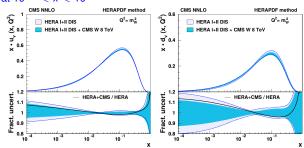
• NNLO analyses of inclusive data cannot sufficiently constrain α_S

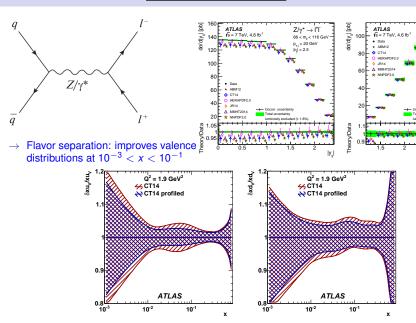
- only indirectly sensitive to α_S via scaling violation and F_L
- extracted α_S is very sensitive to the cut on photon virtuality Q^2 : higher twist effects, higher-order corrections, etc.


Jet production at HERA H1&ZEUS, EPJ C 82 (2022) 3, 243


Combined PDF+ α_S NNLO fit to the HERA inclusive+jet data:

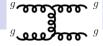
$$\begin{array}{l} \alpha_S(\textit{M}_Z) = 0.1156 \pm 0.0011 (\text{exp}) \\ ^{+0.0001}_{-0.0002} (\text{model} + \text{param.}) \pm 0.0029 (\text{scale}) \end{array}$$

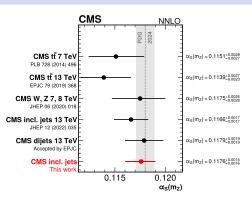

- NNLO analyses of inclusive data cannot sufficiently constrain α_S
 - only indirectly sensitive to α_S via scaling violation and F_L
 - extracted α_S is very sensitive to the cut on photon virtuality Q²: higher twist effects, higher-order corrections, etc.
- However, measurements of jet production are **directly** sensitive to α_S

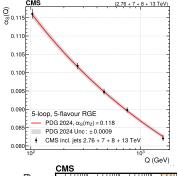


W production at LHC CMS, EPJ C76 (2016) 469

→ Flavor separation: improves valence distributions at $10^{-3} < x < 10^{-1}$

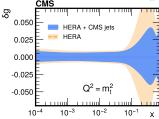





66 < m, < 116 GeV

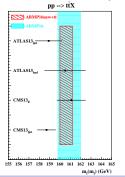
p., > 20 GeV

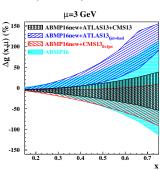
2.5 < |n_| < 4.9

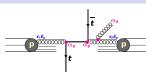


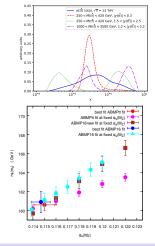
CMS

- Simultaneous fit of PDFs and α_S
- Used data on inclusive jet production $d^2\sigma/dp_Tdy$ at $\sqrt{s} = 2.76, 7, 8$ and 13 TeV and their correlations
- Significant constraints on gluon PDF, especially at large x
- $\alpha_S(M_Z) = 0.1176^{+0.0014}_{-0.0016}$ + test of α_S running from Q = 100 to 1600 GeV

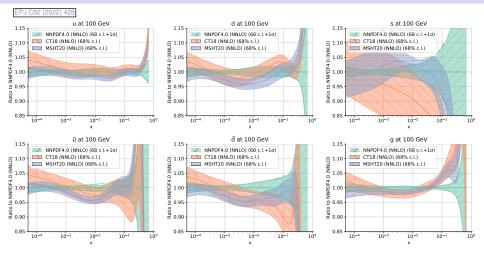



Top quark production at LHC Alekhin et al., EPJ C 85 (2025) 162


• Top quark pair production is sensitive to g PDF, α_S and m_t :


$$\sigma^{tot}(tar{t}) \sim g imes g imes lpha_S^2/m_t^2$$
 (LO)

- ullet Differential $tar{t}$ cross sections are sensitive to these parameters in different way
- e.g. double-differential $t\bar{t}$ data $\frac{d^2\sigma}{M(t\bar{t})}y(t\bar{t})$:
 - ▶ $M(t\bar{t}) \sim \sqrt{sx_1x_2}$ is sensitive to m_t , g
 - $V(t\bar{t}) \sim \frac{1}{2} \ln \frac{x_1}{x_2}$ is sensitive to g
 - ideally one needs $d^3\sigma/M(t\bar{t})y(t\bar{t})N_{jet}$ CMS,EPJ C80 (2020) 658 however, theory is still NLO only for $t\bar{t}$ + jets


Modern proton PDF fits: brief summary of methodology

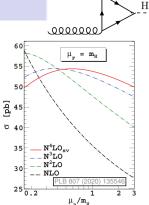
	ABMPtt	CT18	MSHT20	NNPDF40
Year	2023	2019	2020	2021
Data:				
DIS	+	+	+	+
W,Z	+	+	+	+
tīt	+	+	+	+
single <i>t</i>	+	_	_	+
jets	_	+	+	+
Parametrisation	functional	functional	functional	NN
Uncertainties	$\Delta \chi^2 = 1$	dyn. $\Delta \chi^2 > 1$	dyn. $\Delta \chi^2 > 1$	MC method
$\alpha_{\mathcal{S}}, m_{c,b,t}$	fitted	fixed	fixed	fixed

Remarks:

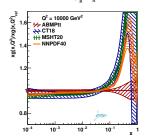
- disclaimer: this is not an exhaustive summary
- these are latest "general-purpose" proton PDF fits at NNLO QCD available on LHAPDF
 - do not consider e.g. QCD+QED, or approximate N³LO QCD fits
- ullet there is a variety of data sets in each group (e.g. various $t ar{t}$ differential distributions)
 - ▶ additional data on $p_T(Z)$, W + c, direct photon production, . . .
- ullet CT, MSHT, NNPDF determine $lpha_{\mathcal{S}}, m_{c,b,t}$ in separate fits, but fix them in their nominal ones

Modern proton PDF fits: comparison

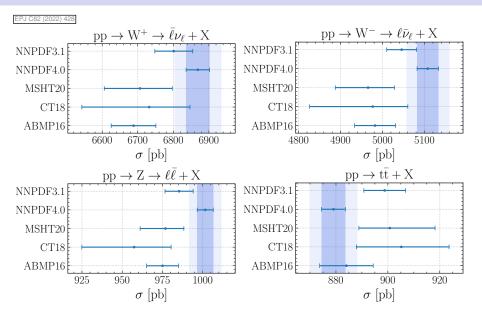
- $u, \bar{u}, d, \bar{d}, g$: 1% to a few % uncertainties in the bulk of x region
 - ▶ larger uncertainties at $x \leq 10^{-4}$ or $x \to 1$; s = 5-10% uncertainty
- However, different PDF fits do not always agree within their uncertainties
- ullet ABMP is not shown here because of different α_S : larger differences w.r.t other fits


Application: Higgs x-section with modern PDFs

PDF Name	N2LO	N3LO	N4LOsv
ABMP16	$(45.4 \pm 4.6)^{+0.7}_{-0.7}$	$(49.6 \pm 2.6)^{+0.8}_{-0.8}$	$(50.8 \pm 1.9)^{+0.9}_{-0.9}$
ABMPtt	$(45.0 \pm 4.6)^{+0.6}_{-0.6}$	$(49.2 \pm 2.6)^{+0.7}_{-0.7}$	$(50.4 \pm 1.9)^{+0.8}_{-0.8}$
CT18NNLO	$(47.4 \pm 5.1)^{+1.3}_{-1.7}$	$(52.0 \pm 2.9)^{+1.4}_{-1.9}$	$(53.4 \pm 2.1)^{+1.5}_{-1.9}$
MMHT2014nnlo68cl	$(47.7 \pm 5.1)^{+0.6}_{-0.8}$	$(52.3 \pm 2.9)^{+0.7}_{-1.0}$	$(53.8 \pm 2.2)^{+0.7}_{-1.0}$
MSHT20nnlo_as118	$(47.4 \pm 5.1)^{+0.5}_{-0.6}$	$(52.0 \pm 2.9)^{+0.6}_{-0.6}$	$(53.4 \pm 2.1)^{+0.6}_{-0.6}$
NNPDF40_nnlo_as_01180	$(47.8 \pm 5.1)^{+0.3}_{-0.3}$	$(52.4 \pm 2.9)^{+0.3}_{-0.3}$	$(53.8 \pm 2.2)^{+0.3}_{-0.3}$
PDF4LHC21_40	$(47.6 \pm 5.1)^{+0.8}_{-0.8}$	$(52.3 \pm 2.9)^{+0.9}_{-0.9}$	$(53.7 \pm 2.2)^{+0.9}_{-0.9}$
MSHT20an3lo_as118	$(45.0 \pm 4.8)^{+0.8}_{-0.7}$	$(49.4 \pm 2.8)^{+0.9}_{-0.8}$	$(50.7 \pm 2.0)^{+0.9}_{-0.8}$

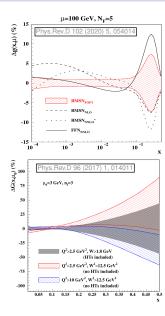

Table 1: Higgs cross-section along with the absolute error obtained from seven-point scale variation around $(\mu_R^{\ c}, \mu_F^{\ c}) = (1,1) m_H$ as well as intrinsic PDF uncertainty using LHAPDF. $\sqrt{S}=14$ TeV, α_S from LHAPDF (NNLO value).

- Das, Moch, Vogt, Phys.Lett.B 807 (2020) 135546.
 - N4LOsv: soft virtual ggF corrections at 4 loops
 - ▶ N3LO: effective theory for $m_t \gg m_H$
 - ▶ N2LO: full theory for $m_H \lesssim m_t$
 - → apparent convergence of perturbative series
- N4LOsv estimates missing higher-order corrections: 2%
- Larger differences originate from PDF + α_S sets:


 $7\% (1995) \rightarrow 12\% (2020) \rightarrow 7\% (2024) \rightarrow ???$

0000000

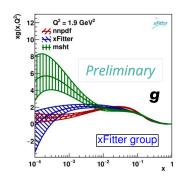
Application: other processes at LHC with modern PDFs

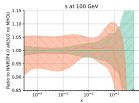


Some reasons for differences between global fits

- Heavy-flavor PDF evolution and heavy flavour scheme for DIS [Phys.Rev.D 102 (2020) 5, 054014]
 - fixed-flavour number scheme in ABMP fits is accurate to NNLO for light and heavy quark production (exact or to the best available approximation) and works very well for HERA kinematics
 - CT, MSHT and NNPDF fits use different variable-flavour number schemes which miss some NNLO corrections for heavy quark production and have further theoretical uncertainties
- Higher-twist (HT) corrections for DIS

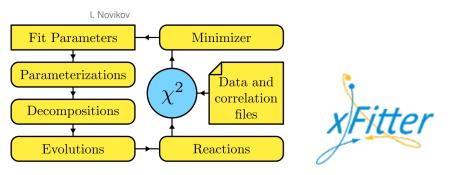

Phys.Rev.D 96 (2017) 1, 014011

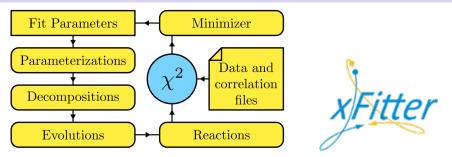

- ABMPtt/ABMP16 fits HT terms
- other fits apply cuts to reduce impact of HT
- Correlation between gluon PDF, α_S and m_t :
 - fully accounted for in ABMPtt/ABMP16
 - α_S and m_t are fixed in other fits



Towards PDF extraction at N³LO

- PDF determination is being pushed to N³LO now
 - N³LO theory for PDF evolution and DIS is almost there (see e.g. <u>arXiv:2406.16188</u>)
 - some processes at hadron colliders, e.g. DY production, are also known at N³LO
- Recent N³LO PDF fits:
 - ▶ MSHT group: includes α_S variation study
 - NNPDF group
 - xFitter group [preliminary]
- There is a large difference for the gluon PDF among the different groups:
 - different approximations of missing N³LO pieces
 - g is strongly correlated with α_S

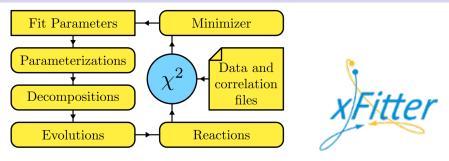



→ careful benchmark is desired: need public codes

Overview of xFitter [gitlab.com/fitters/xfitter]

- xFitter (HERAfitter before 2015) is a unique open-source QCD fit framework:
 - extract PDFs and theory parameters
 - assess impact of new experimental (pseudo-)data and check consistency
 - test different theoretical assumptions
 - ... any exercise which involves data vs. theory
- It is widely used by LHC experiments and theorists (> 100 publications)

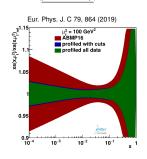
Flexibility of xFitter (1)

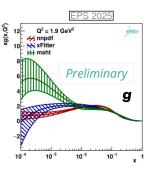


Why is xFitter UNIQUE and so VERSATILE/FLEXIBLE/ADAPTABLE? Because it is fully modular.

E.g., hadron interactions are realized as:

- PDF parametrisation at starting scale: it is enough to type your favourite formulas
- PDF decomposition: construct valence, sea and gluon, apply sum rules (automatic numerical integration is available)
- PDF evolution: interfaced various codes (QCDNUM, OPENQCDRAD, APFEL, LHAPDF, APFEL++, HOPPET (new!) for PDF evolution up to approximate N³LO (TMD PDF evolution is also available in (unofficial) branch)
- hard scattering ("reaction"): very many processes are available

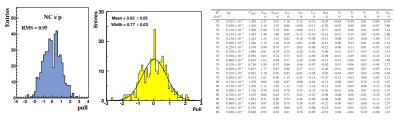

Flexibility of xFitter (2)


- hard scattering ("reaction"): very many processes are available
 - various heavy-quark schemes for ep DIS
 - some "simple" calculations, e.g. LO DY
 - interfaced external packages, e.g. HATHOR (NNLO total heavy-quark and single t hadroproduction) and HVQMNR (NLO heavy-quark differential hadroproduction)
 - but main emphasis is put on interfaces to fast interpolation tables, such as fastNLO, ApplGrid, PineAppl: allows us to get recent higher-order calculations (e.g. MCFM, MATRIX etc.) "for free"
- Flexible χ^2 implementation (treatment of experimental uncertainties)
- χ^2 minimisation: MINUIT, CERES
- ... and one can change/mix all these ingredients freely!

Selected studies by the xFitter team

- "Probing the strange content of the proton with charm production in charged current at LHeC" [Eur. Phys. J. C 79, 864 (2019)]
- "Parton Distribution Functions of the Charged Pion Within The xFitter Framework" [Phys.Rev.D 102 (2020) 1, 014040]
- (preliminary) N³LO fit of DIS HERA data (extension with fixed-target data in progress)

Basic ingredient for any data vs. theory fit: χ^2 expression


$$\chi^2_{\mathsf{exp}}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{ij} \left(m_i - \sum_{\alpha} \Gamma^i_{\alpha} b_{\alpha} - \mu_i \right) C^{-1}_{\mathsf{stat}, ij} \left(m_i - \sum_{\alpha} \Gamma^i_{\alpha} b_{\alpha} - \mu_i \right) + \sum_{\alpha} b_{\alpha}^2$$

- m_i: data
- μ_i : theory
- C_{stat, ij}: statistical covariance matrix
- ullet b_{lpha} : nuisance parameters for correlated systematic uncertainties
- Γ_{α} : scaled correlated systematic uncertainties; might depend on m_i , μ_i :

Treatment	Scaling rule (Γ^i_{α})
Poisson	$\sqrt{m_i\mu_i}$
Multiplicative	m_i
Additive	μ_i

- Correlated uncertainties can be supplied as covariance matrix or source-by-source
- Also uncertainties can be included with offset method (external variations)
- Need to know what are uncorrelated and correlated uncertainties, and how they scale (input from experiments which is not always available)

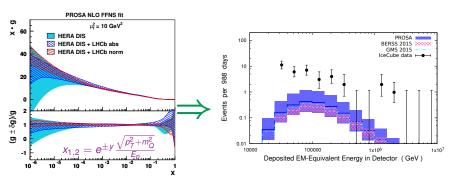
HERA DIS data: discussion which might be relevant for future machines

- HERA DIS data are final combined H1 and ZEUS data
 - essentially provided as a single data set (no overlap)
 - combination served as a data consistency test
- Very complete description of correlated uncertainties
- Bin-by-bin unfolding (very good resolution of kinematic variables Q^2, x_{Bj})
 - however, sometimes at phase space corners a coarse binning had to be used
- Data are reported at (Q²,x_{Bj}) values
 - although experimental measurements were done in intervals of Q²,x_{Bj}
 - these intervals were different in H1 and ZEUS measurements
 - ▶ interpolation procedure (**swimming**) was applied to provide data at (Q^2, x_{Bj}) values
 - → potential model dependence, however, corresponding uncertainties were estimated

LHC data: discussion

Typical description of correlated systematic uncertainties [LHCb 5 TeV JHEP06 (2017) 147

Table 2: Fractional systematic uncertainties, in percent. Uncertainties that are computed bin-by-bin are expressed as ranges giving the minimum to maximum values. Ranges for the correlations between p_{T} -y bins and between modes are also given, expressed in percent.

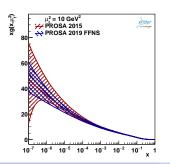

	Uncertainties (%)			Correlations (%)		
	D^0	D^+	D_s^+	D^{*+}	Bins	Decay modes
Luminosity	3.8			100	100	
Tracking	3-5	5-7	4-7	5-7	90 - 100	90-100
Branching fractions	1.2	2.1	5.8	1.5	100	0 - 95
Simulation sample size	0 - 10	0 - 10	2-9	1 - 10	0	0
Simulation modelling	0.3	0.7	0.6	2	0	0
PID sample size	0-1	0-1	0-2	0-2	0 - 100	0 - 100
PID binning	0 - 30	0 - 10	0 - 20	0 - 20	0	0
Fit model shapes	0-3	0-3	0-3	0.0 - 1.0	0	0

This information is not really sufficient:

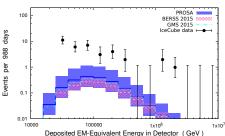
- need to know contributions of different systematic uncertainties for each bin (not just ranges)
- need to know correlation between different D and energies
- total covariance matrices were provided for some LHCb data sets, but
 - such matrices do not allow one to properly correlate different data sets
 - some of them appeared to be not positive definite (issue of rounding?) → similar problems with other LHC data

Charm production at LHCb o gluon at low x o atmosphere ν fluxes

- LHCb measured:
 - charm $0 < p_T < 8 \text{ GeV}, 2 < y < 2.5 [NPB871 (2013) 1]$
 - beauty $0 < p_T < 40$ GeV, 2 < y < 2.5 [JHEP 1308 (2013) 1
- first NLO QCD analysis of these data: Eur. Phys. J. C75 (2015)
- Improved gluon and sea-quark distributions up to $x \gtrsim 5 \times 10^{-6}$ (not covered by other experimental data)
 - predict IceCube background for very high energy cosmic ν
 [JHEP05 (2017) 004]



Charm production at LHCb o gluon at low x o atmosphere ν fluxes


- LHCb measured:
 - charm $0 < p_T < 8 \text{ GeV}, 2 < y < 2.5 [NPB871 (2013) 1]$
 - beauty $0 < p_T < 40$ GeV, 2 < y < 2.5 [JHEP 1308 (2013) 1
- first NLO QCD analysis of these data: Eur. Phys. J. C75 (2015)
- Improved gluon and sea-quark distributions up to $x \gtrsim 5 \times 10^{-6}$ (not covered by other experimental data)

- predict IceCube background for very high energy cosmic ν [JHEP05 (2017) 004]
- further update with ALICE and new LHCb data [JHEP04 (2020) 118]

Summary and outlook

- Presently proton PDFs can only be extracted from data:
 - comparing data to theoretical predictions for well understood and well measured processes
 - NNLO QCD is state of the art: available for many processes today
 - ▶ first steps towards N³LO have been done recently
- Different methodology is employed by different groups:
 - parametric or NN approach
 - different selection of data
 - different schemes to treat heavy quarks
 - different calculation codes
 - different methodology to estimate uncertainties
 - ightarrow sizeable differences which need to be understood independently of moving to N 3 LO
- Most of the distributions in the bulk of the kinematic space are claimed to be known with a few % uncertainty today
- Public tools are in place to further benchmark and improve agreement between different PDF extractions

BACKUP

xFitter community

- ullet \sim 10 active developers (both experimentalists and theorists) + a few tens of users
- bi-weekly meetings via zoom + physical room at DESY (Wednesday 3pm)
- (almost) annual external meetings:
 - 2020: DESY
 - 2022: Paris-Saclay University
 - ▶ 2023: CERN
- CERN Gitlab https://gitlab.cern.ch/fitters/xfitter
 - read access for everyone (also for development branches)
 - ▶ needed CERN account to commit new code, or use mirror at https://gitlab.com
- DESY support: naf-xfitter machine + access to DESY NAF BIRD computing cluster (need DESY computing account)
- ullet every winter/summer school at DESY \sim 1 student (remote/on site) for xFitter
 - very successful projects (e.g. A. Anataichuk et al., EPJ C84 (2024) 1277)
 - contact us if you have students willing to work on phenomenology topics matching xFitter scope
- mailing list: xfitter-users@googlegroups.com