Effects of *eett* operators in the measurement of the Higgs trilinear coupling at lepton colliders

Lucine Tabatt

Project w/ Lukas Allwicher and Christophe Grojean

- in trilinear Higgs self coupling λ_3 one of the last things in the SM, that is not measured (precisely) (Currently $\mathcal{O}(100\%)$) [ATLAS, 2024; CMS, 2019])
- using SMEFT the main change can be described by the coefficient of $\mathcal{O}_H = (HH^\dagger)^3$

■ looking at the process $e^+e^- \to ZH$ this operator enters at NLO [Dawson et al., 2025] \to projected precision $\sim \mathcal{O}(20\%)$

- looking at the process $e^+e^- \to ZH$ this operator enters at NLO [Dawson et al., 2025] \to projected precision $\sim \mathcal{O}(20\%)$
- $lackbox{e}^+e^--tar{t}$ couplings not restricted very well by measurements currently and are predicted by many BSM models, also enters at NLO

- looking at the process $e^+e^- \to ZH$ this operator enters at NLO [Dawson et al., 2025] \to projected precision $\sim \mathcal{O}(20\%)$
- $=e^+e^--t\bar{t}$ couplings not restricted very well by measurements currently and are predicted by many BSM models, also enters at NLO
- Question: Would the presence of contributions to these couplings spoil the measurement of the trilinear Higgs coupling in lepton colliders?

SMEFT - trilinear Higgs coupling

$$V(h) = m_h^2 h^2 + \kappa_3 \lambda_3^{SM} h^3 + \kappa_4 \lambda_4^{SM} h^4, \qquad (1)$$

Triliniear Higgs coupling λ_3 in the following parametrised by

$$\delta \kappa_3 \equiv \frac{\lambda_3}{\lambda_3^{\text{SM}}} - 1 = -\frac{2v^4}{\Lambda^2 m_h^2} C_H + \frac{3v^2}{\Lambda^2} \left(C_{H\Box} - \frac{1}{4} C_{HD} \right) , \quad (2)$$

SMEFT - trilinear Higgs coupling

$$\delta\kappa_{3} = -\frac{2v^{4}}{\Lambda^{2}m_{h}^{2}}\mathcal{C}_{H} + \frac{3v^{2}}{\Lambda^{2}}\left(\mathcal{C}_{H\Box} - \frac{1}{4}\mathcal{C}_{HD}\right),$$

$$\mathcal{O}_{H} = (H^{\dagger}H)^{3},$$

$$\mathcal{O}_{H\Box} = (H^{\dagger}H)\Box(H^{\dagger}H),$$

$$\mathcal{O}_{HD} = |H^{\dagger}D_{\mu}H|^{2},$$
(3)

with $\Box \equiv \partial_{\mu}\partial^{\mu}$.

$\mathcal{C}_{H\square}$ - \mathcal{C}_{H} Plane

SMEFT - trilinear Higgs coupling

Neglect $\mathcal{O}_{H\square}$ and \mathcal{O}_{HD} in the following (highly contrained by electroweak precision observables):

$$\delta\kappa_3 = -\frac{2v^4}{\Lambda^2 m_h^2} \mathcal{C}_H$$

$$\mathcal{O}_H = (H^\dagger H)^3$$

SMEFT - $e^+e^- - t\bar{t}$ interactions

The SMEFT operators modifying $e^+e^- - t\bar{t}$ interactions are:

$$[\mathcal{O}_{lq}^{(1)}]_{1133} = (\bar{\ell}_{1}\gamma_{\mu}\ell_{1})(\bar{q}_{3}\gamma^{\mu}q_{3})$$

$$[\mathcal{O}_{lq}^{(3)}]_{1133} = (\bar{\ell}_{1}\gamma_{\mu}\sigma^{I}\ell_{1})(\bar{q}_{3}\gamma^{\mu}\sigma^{I}q_{3})$$

$$[\mathcal{O}_{qe}]_{3311} = (\bar{q}_{3}\gamma^{\mu}q_{3})(\bar{e}_{1}\gamma_{\mu}e_{1})$$

$$[\mathcal{O}_{lu}]_{1133} = (\bar{\ell}_{1}\gamma_{\mu}\ell_{1})(\bar{u}_{3}\gamma^{\mu}u_{3})$$

$$[\mathcal{O}_{eu}]_{1133} = (\bar{e}_{1}\gamma_{\mu}e_{1})(\bar{u}_{3}\gamma^{\mu}u_{3})$$

$$[\mathcal{O}_{eu}]_{1133} = (\bar{e}_{1}\gamma_{\mu}e_{1})(\bar{u}_{3}\gamma^{\mu}u_{3})$$

SMEFT setting

So in general restrict: 5+1 Coefficients

- $[\mathcal{C}_{lq}^{(1)}]_{1133}, [\mathcal{C}_{lq}^{(3)}]_{1133}, [\mathcal{C}_{lu}]_{1133}, [\mathcal{C}_{qe}]_{3311}, [\mathcal{C}_{eu}]_{1133}$
- \blacksquare C_H

SMEFT setting

So in general restrict: 5+1 Coefficients

- $[\mathcal{C}_{lq}^{(1)}]_{1133}, [\mathcal{C}_{lq}^{(3)}]_{1133}, [\mathcal{C}_{lu}]_{1133}, [\mathcal{C}_{qe}]_{3311}, [\mathcal{C}_{eu}]_{1133}$
- \blacksquare \mathcal{C}_H
- \Rightarrow need more than $e^+e^- o ZH$ to restrict this parameter space

Observables at Tree Level

Tree level effects in:

$$R_b$$
, R_t $\left(R_a = \frac{\sigma(e^+e^- \to a\bar{a})}{\sum_{a=u.d.s.c.b} \sigma(e^+e^- \to a\bar{a})}\right)$ [Greljo et al., 2024]

 \blacksquare and Drell-Yan $(pp \rightarrow e^+e^-)$ [Allwicher et al., 2023]

Observables at 1-Loop

Operators entering at Loop level in

- $e^+e^- \rightarrow ZH$ (main effect for *eett*-operators through RG-effects) [de Blas et al., 2019; Celada et al., 2024]
- Electroweak Precision Observables (EWPOs eg. Z/W-pole observables) [de Blas et al., 2019; Bernardi et al., 2022; Blondel and Janot, 2021; LEP-Collaboration et al., 2004; Maura et al., 2025a]

Fitting the coefficients to the data/data projections

Fitting the coefficients to the data/data projections

Triliniear Higgs Coupling

eett-coefficients restricted enough to get a good picture on the trilinear higgs coupling?

Triliniear Higgs Coupling

- eett-coefficients restricted enough to get a good picture on the trilinear higgs coupling?
- yes!

$$\delta\kappa_3^{
m sep}=0.169 \quad o \quad \delta\kappa_3^{
m marg}=0.172$$

$$\delta\kappa_3^{
m marg, \ wo. \ } ^{R_q}=0.176$$

UV Assumptions

■ top- and electrophilic hypothesis to get the *eett*-interactions (U(2)) in quark sector with a third generation dominance and $U(1)_e$ in the lepton sector)

UV Assumptions

- top- and electrophilic hypothesis to get the *eett*-interactions (U(2)) in quark sector with a third generation dominance and $U(1)_e$ in the lepton sector)
- opens up space for more operators:
 - 2 scalar operators $([\mathcal{O}_{\textit{lequ}}^{(1)}]_{1133}, [\mathcal{O}_{\textit{lequ}}^{(3)}]_{1133})$
 - 5 four-quark operators ($[\mathcal{O}_{qq}^{(1)}]_{3333}$, $[\mathcal{O}_{qq}^{(3)}]_{3333}$, $[\mathcal{O}_{uu}]_{3333}$, $[\mathcal{O}_{qu}^{(1)}]_{3333}$, $[\mathcal{O}_{qu}^{(8)}]_{3333}$)
 - 3 four-lepton operators ([\mathcal{O}_{ee}]₁₁₁₁, [\mathcal{O}_{le}]₁₁₁₁, [\mathcal{O}_{ll}]₁₁₁₁)

UV Assumptions

- top- and electrophilic hypothesis to get the *eett*-interactions (U(2)) in quark sector with a third generation dominance and $U(1)_e$ in the lepton sector)
- opens up space for more operators:
 - 2 scalar operators $([\mathcal{O}_{\textit{lequ}}^{(1)}]_{1133}, [\mathcal{O}_{\textit{lequ}}^{(3)}]_{1133})$
 - 5 four-quark operators ($[\mathcal{O}_{qq}^{(1)}]_{3333}$, $[\mathcal{O}_{qq}^{(3)}]_{3333}$, $[\mathcal{O}_{uu}]_{3333}$, $[\mathcal{O}_{qu}^{(1)}]_{3333}$, $[\mathcal{O}_{qu}^{(8)}]_{3333}$)
 - 3 four-lepton operators ([\mathcal{O}_{ee}]₁₁₁₁, [\mathcal{O}_{le}]₁₁₁₁, [\mathcal{O}_{ll}]₁₁₁₁)
- do not contribute to $e^+e^- \rightarrow ZH$ observable (in $m_e=0$ limit), but in the other considered observables

UV assumptions - $\delta \kappa_3$

$$\delta\kappa_3^{\rm sep} = 0.169 \quad \rightarrow \quad \delta\kappa_3^{\rm marg, \ all \ UV \ ops} \approx 0.23$$

■ comparable with 25 % with a $U(2)^5$ symmetry with a dominance of the 3rd generation [Maura et al., 2025b]

Conclusion

- No problem to measure BSM *eett*-interactions and the trilinear Higgs self coupling at the same time in future projections (FCC-ee)
- lacksquare important observables: R_b , EWPOs and $e^+e^- o ZH$
- see paper (in progress): specific UV examples, symmetry assumptions and a more precise analysis of the parameter space

Backup: UV Example

$$-\mathcal{L}_{S_1} = (y_{S_1}^{ql})_{ij} S_1^{\dagger} \bar{q}_{L,i}^{c} i \sigma_2 I_{L,j} (y_{S_1}^{eu})_{ij} S_1^{\dagger} \bar{e}_{R,i}^{c} u_{R,j} + \text{ h.c.}$$
 (5)

$$-\mathcal{L}_{R_2} = (y_{R_2}^{lu})_{ij} R_2^{\dagger} i \sigma_2 \bar{I}_{L,i}^T u_{R,j} + (y_{R_2}^{eq})_{ij} R_2^{\dagger} \bar{e}_{R,i} q_{L,j} + \text{ h.c.}$$
 (6)

Backup: UV Example

$$[C_{lq}^{(1)}]_{1133} = \frac{1}{4} \frac{(y_{S_1}^{ql})_{31}^* (y_{S_1}^{ql})_{31}}{M_{S_1}^2}$$
 (7)

$$[C_{lq}^{(3)}]_{1133} = -\frac{1}{4} \frac{(y_{S_1}^{ql})_{31}^* (y_{S_1}^{ql})_{31}}{M_{S_1}^2}$$
(8)

$$[C_{eu}]_{1133} = \frac{1}{2} \frac{(y_{S_1}^{eu})_{i13}^* (y_{S_1}^{eu})_{13}}{M_{S_1}^2}$$
(9)

$$[C_{lu}]_{1133} = -\frac{1}{2} \frac{(y_{R_2}^{lu})_{13}^* (y_{R_2}^{lu})_{13}}{M_{R_2}^2}$$
(10)

$$[C_{qe}]_{3311} = -\frac{1}{2} \frac{(y_{R_2}^{eq})_{13}^* (y_{R_2}^{eq})_{13}}{M_{R_2}^2},$$
(11)