

Flavored Circular Collider: cornering New Physics at FCC-ee via flavor-changing processes*

25.09.2025, DESY

Marko Pesut
University of Zürich

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE **DESY THEORY WORKSHOP**

SYNERGIES TOWARDS THE FUTURE STANDARD MODEL

HELMHOLTZ

23 - 26 September 2025 DESY Hamburg, Germany

*in collaboration with Lukas Allwicher (DESY) & Gino Isidori (UZH) [2503.17019]

Most theoretical & Pheno. aspects relevant to this work where already very well introduced in Claudia's talk on Tuesday

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

FCC-ee combines advantages of B factories and LHC + opens new frontiers

Clean environment + huge statistics + full range of (boosted) B mesons

Monteil & Wilkinson [2106.01259]

Tremendous improvement in flavour from tera-Z run!

Of the 10^{12} **Z**-bosons produced at tera-**Z**:

- 15% decay to *b*
- 12% decay to *c*
- 3% decay to τ

FCC-ee will allow precision flavour measurements of heavy SM flavours (b and τ)

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

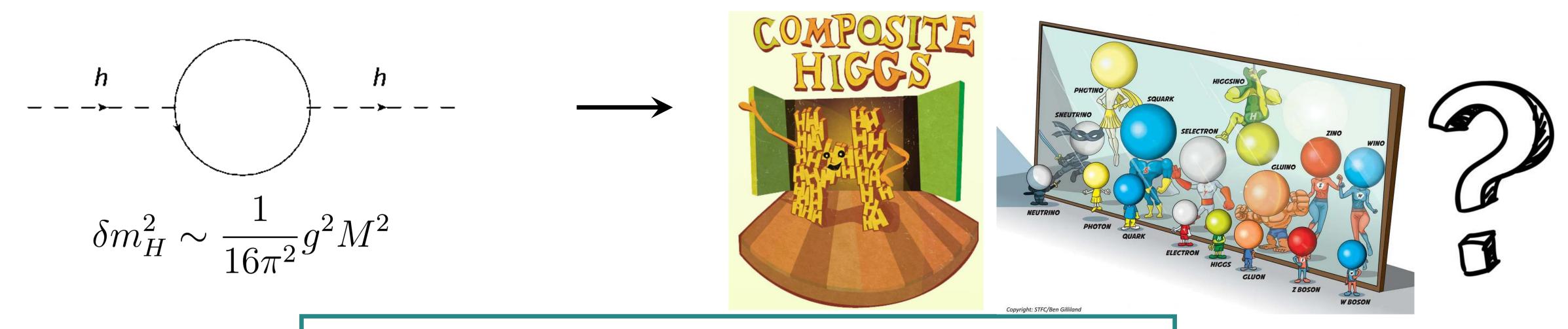
We focus on models aimed at addressing the Higgs hierarchy problem & the Flavour Puzzle

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

We focus on models aimed at addressing the Higgs hierarchy problem & the Flavour Puzzle

Any heavy NP will destabilize the Higgs mass

What could be the *protection mechanism*?



Naturalness suggests NP close to the TeV scale*

See RT D'Agnolo's talk

^{*}More exotic / cosmology-based explanations exists...

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

We focus on models aimed at addressing the Higgs hierarchy problem & the Flavour Puzzle

10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 1 10¹ 10² GeV

$$U(3)^5 o U(2)^n$$
 $Y_u < egin{pmatrix} < 0.01 & 0.04 \\ 1 \end{pmatrix}$
(In the basis where Y_d is diagonal)

Hierarchical pattern of masses & mixing angles in the SM

Approx. symmetries in the SM ... but also relevant for NP!

If $\Lambda_{\rm NP} \lesssim 10^4$ TeV, NP has to be approx. U(2)-symmetric

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

Experimental Motivation: Tensions in semi-leptonic B decays

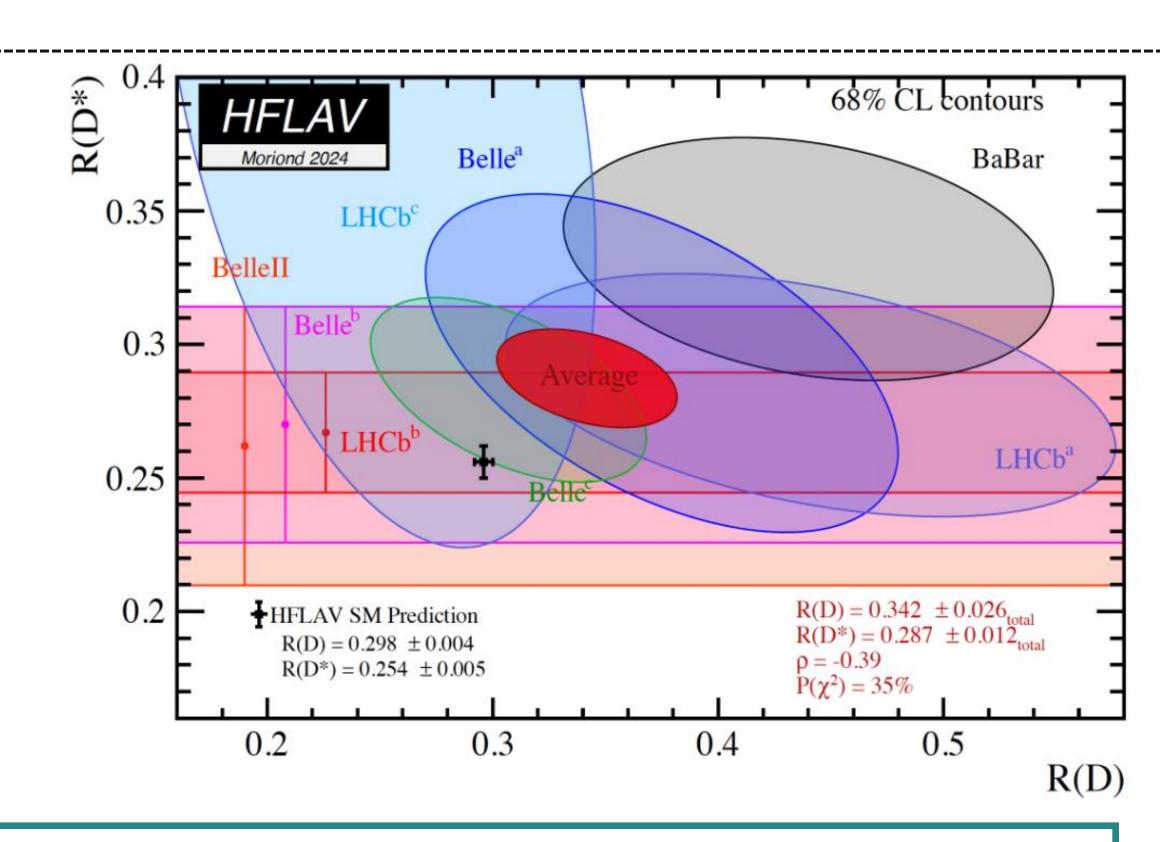
- LFU ratios (R_D and R_{D*}) -> 3 σ tension w.r.t the SM
- Enhancement of $B^+ \to K^+ \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ w.r.t the SM
- Tension in C $_9$ from $b \to s\ell\bar\ell$ -> 2 σ tension w.r.t the SM See also Bordone, Cornella & Davighi [2503.22635]

Relevant SMEFT operators

$$Q_{\ell q}^{(1)[3333]} = (\bar{\ell}^3 \gamma_{\mu} \ell^3) (\bar{q}^3 \gamma^{\mu} q^3) ,$$

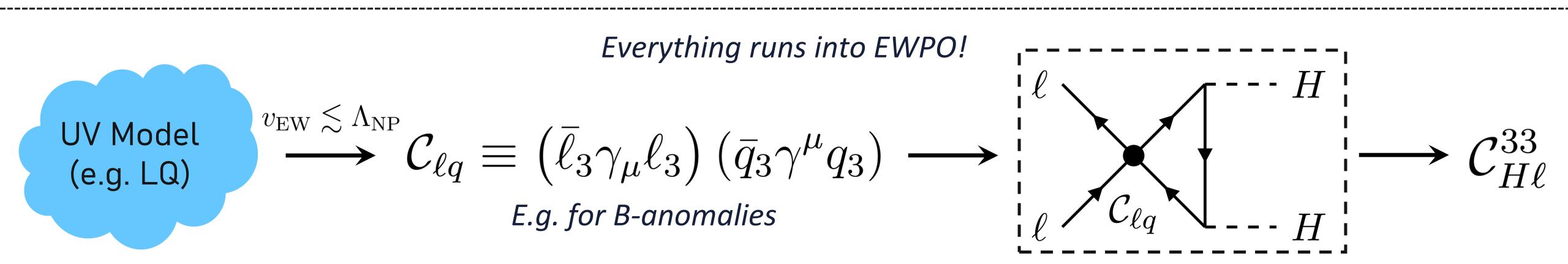
$$Q_{\ell q}^{(3)[3333]} = (\bar{\ell}^3 \gamma_{\mu} \sigma^a \ell^3) (\bar{q}^3 \gamma^{\mu} \sigma^a q^3) ,$$

$$Q_{\ell e q d}^{[3333]} = (\bar{\ell}^3 e^3) (\bar{d}^3 q^3) .$$



These hints are compatible with NP at the TeV scale, dominantly coupled to 3rd family fields!

Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models



Precision EW measurements, via RGE effects, can constrain wide classes of BSM models

EFT Analysis

- Motivated by discrepancies in B decays + flavour non-universality

- Global four-dimensional fit with current flavour, EW and Colliders data*

^{*}c.f. the paper for the full list of observables with projected uncertainties

EFT Analysis

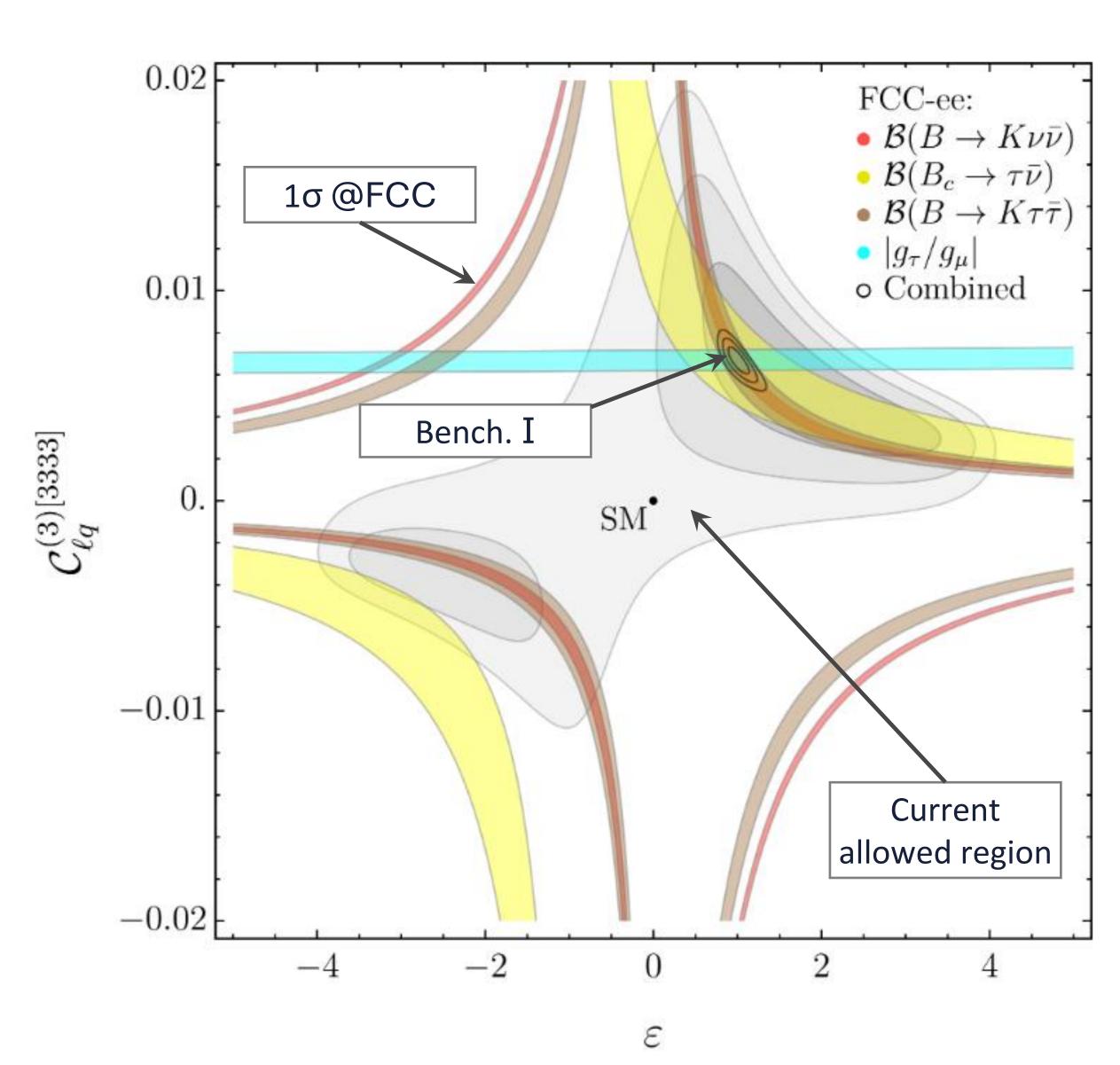
- Motivated by discrepancies in B decays + flavour non-universality

- Global four-dimensional fit with current flavour, EW and Colliders data*
- Projected* FCC-ee measurements assuming benchmark scenarios for NP

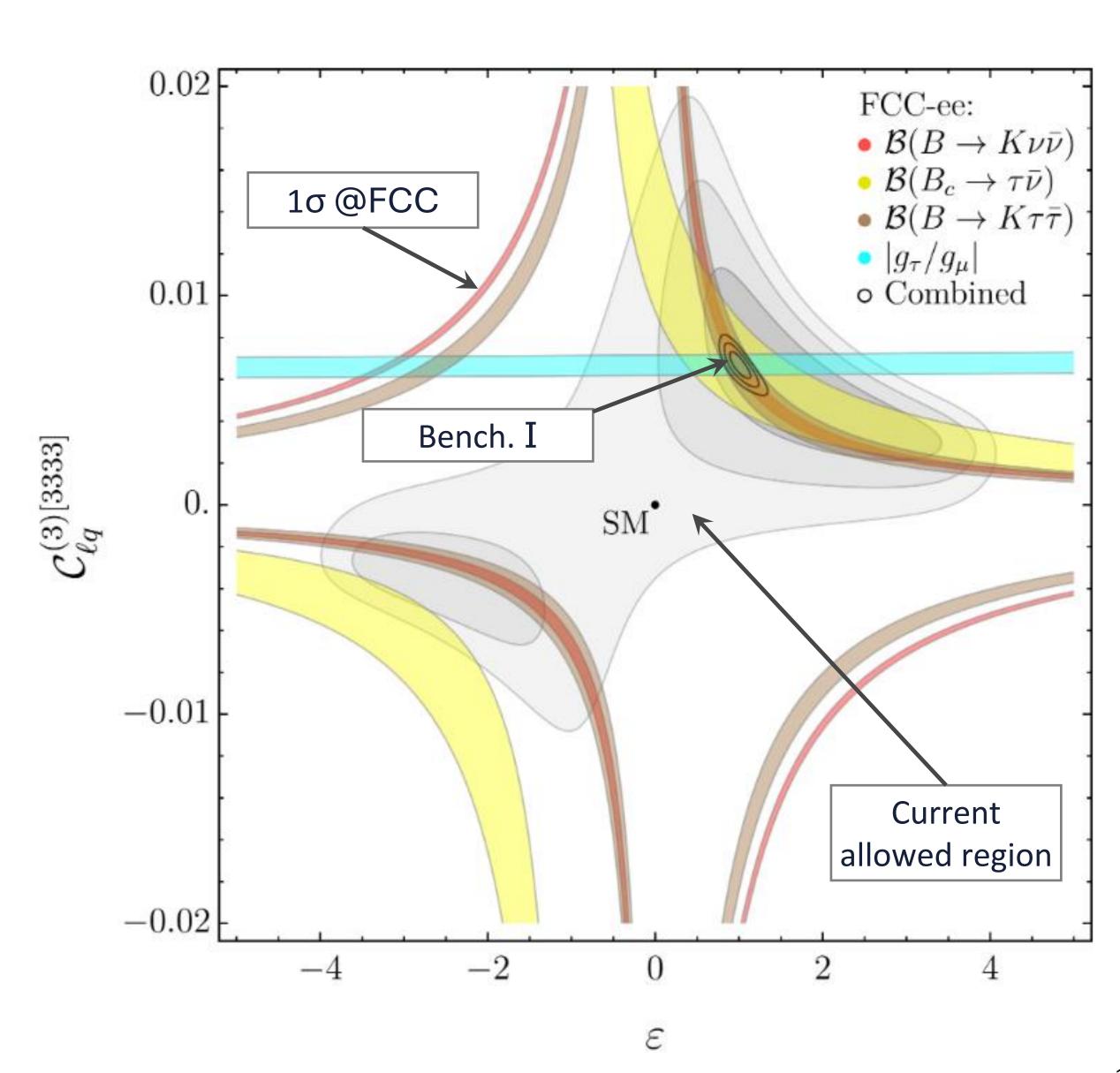
Compatible and preferred by the current fit

^{*}c.f. the paper for the full list of observables with projected uncertainties

I.
$$C_{\ell q}^{(3)[3333]} = 6.7 \times 10^{-3}, \ \varepsilon = 1, \ C_{\ell q}^{(1)[3333]} = C_{\ell eqd}^{[3333]} = 0.$$



I.
$$\mathcal{C}_{\ell q}^{(3)[3333]} = 6.7 \times 10^{-3}, \ \varepsilon = 1, \ \mathcal{C}_{\ell q}^{(1)[3333]} = \mathcal{C}_{\ell eqd}^{[3333]} = 0.$$

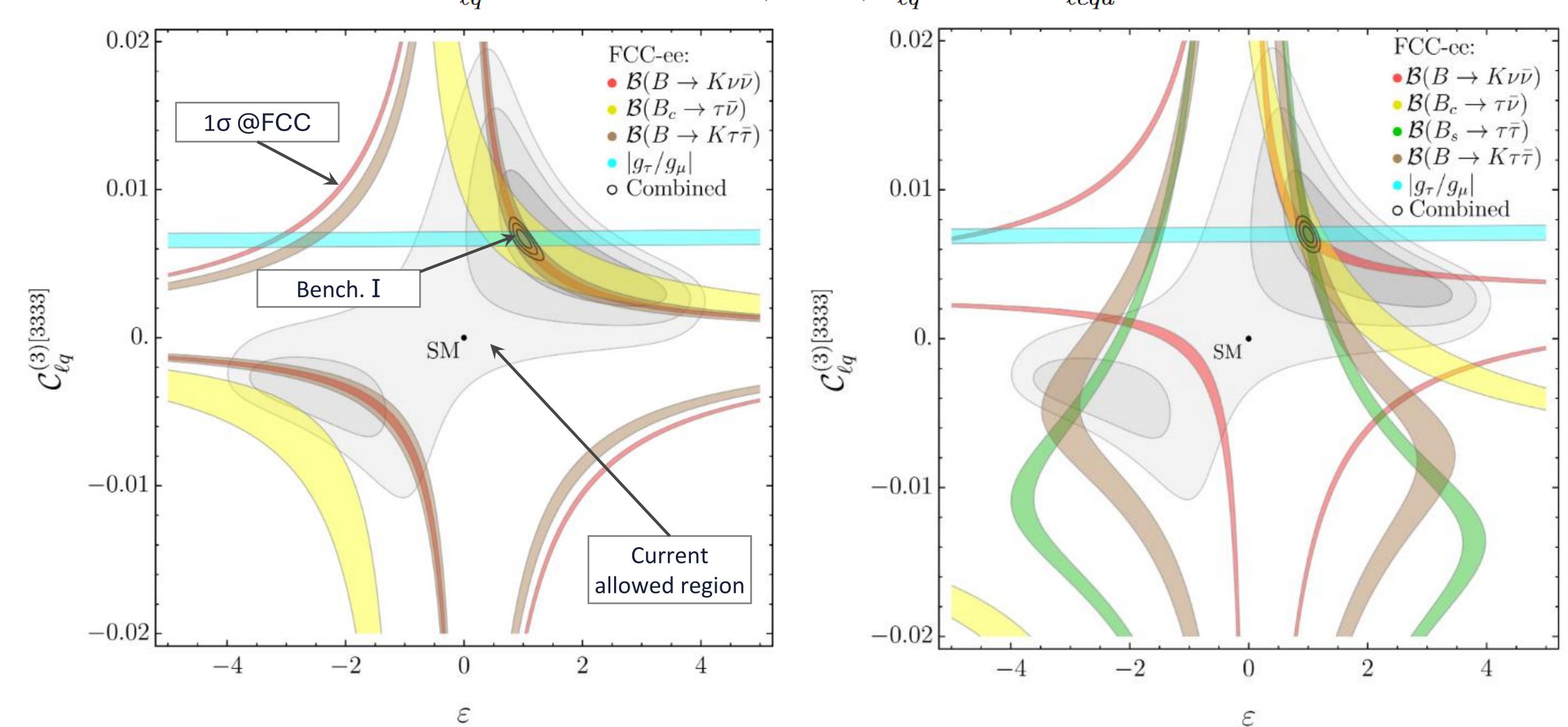


Key points

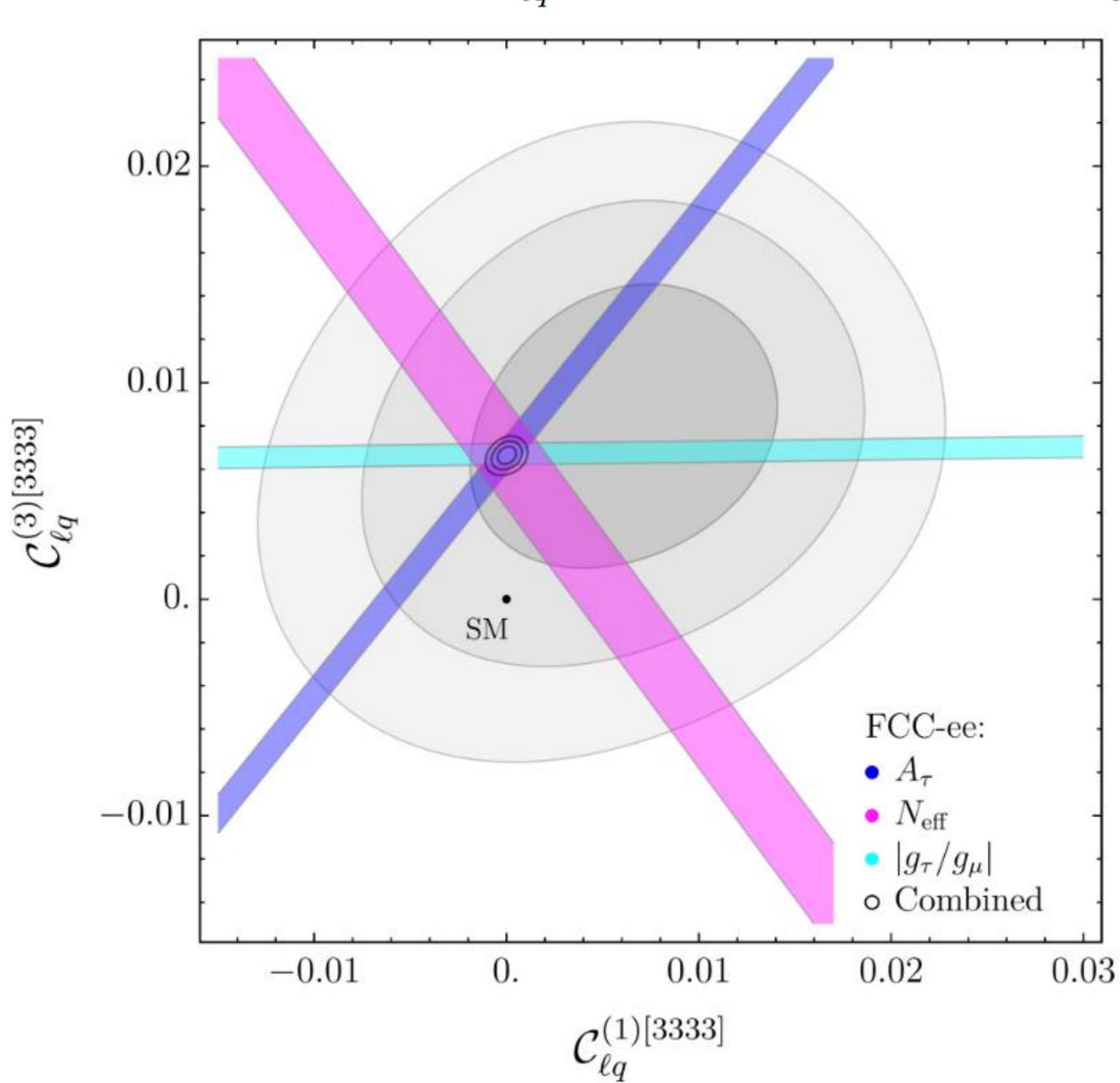
- Redundancy -> corroborate non-SM effect
- > Complementarity -> Probe different NP directions
 - Several independent high-precision observables
 - Flavour + EW interplay -> Flavour of NP (ε)

I.
$$C_{\ell q}^{(3)[3333]} = 6.7 \times 10^{-3}, \ \varepsilon = 1, \ C_{\ell q}^{(1)[3333]} = C_{\ell eqd}^{[3333]} = 0.$$

II.
$$C_{\ell q}^{(3)[3333]} = 6.7 \times 10^{-3}, \ \varepsilon = 1, \ C_{\ell q}^{(1)[3333]} = C_{\ell eqd}^{[3333]} = 3.0 \times 10^{-3}$$



I.
$$C_{\ell q}^{(3)[3333]} = 6.7 \times 10^{-3}, \ \varepsilon = 1, \ C_{\ell q}^{(1)[3333]} = C_{\ell eqd}^{[3333]} = 0.$$



$$\mathcal{O}_{\ell q}^{(1)} = (\bar{\ell}_L^3 \gamma_\mu \ell_L^3) (\bar{q}_L^3 \gamma^\mu q_L^3)$$
$$\mathcal{O}_{\ell q}^{(3)} = (\bar{\ell}_L^3 \sigma^I \gamma_\mu \ell_L^3) (\bar{q}_L^3 \sigma^I \gamma^\mu q_L^3)$$

$$\Delta N_{eff} \sim \delta g_L^{Z\nu} \sim \left(\mathcal{C}_{H\ell}^{(1)[33]} - \mathcal{C}_{H\ell}^{(3)[33]} \right)$$

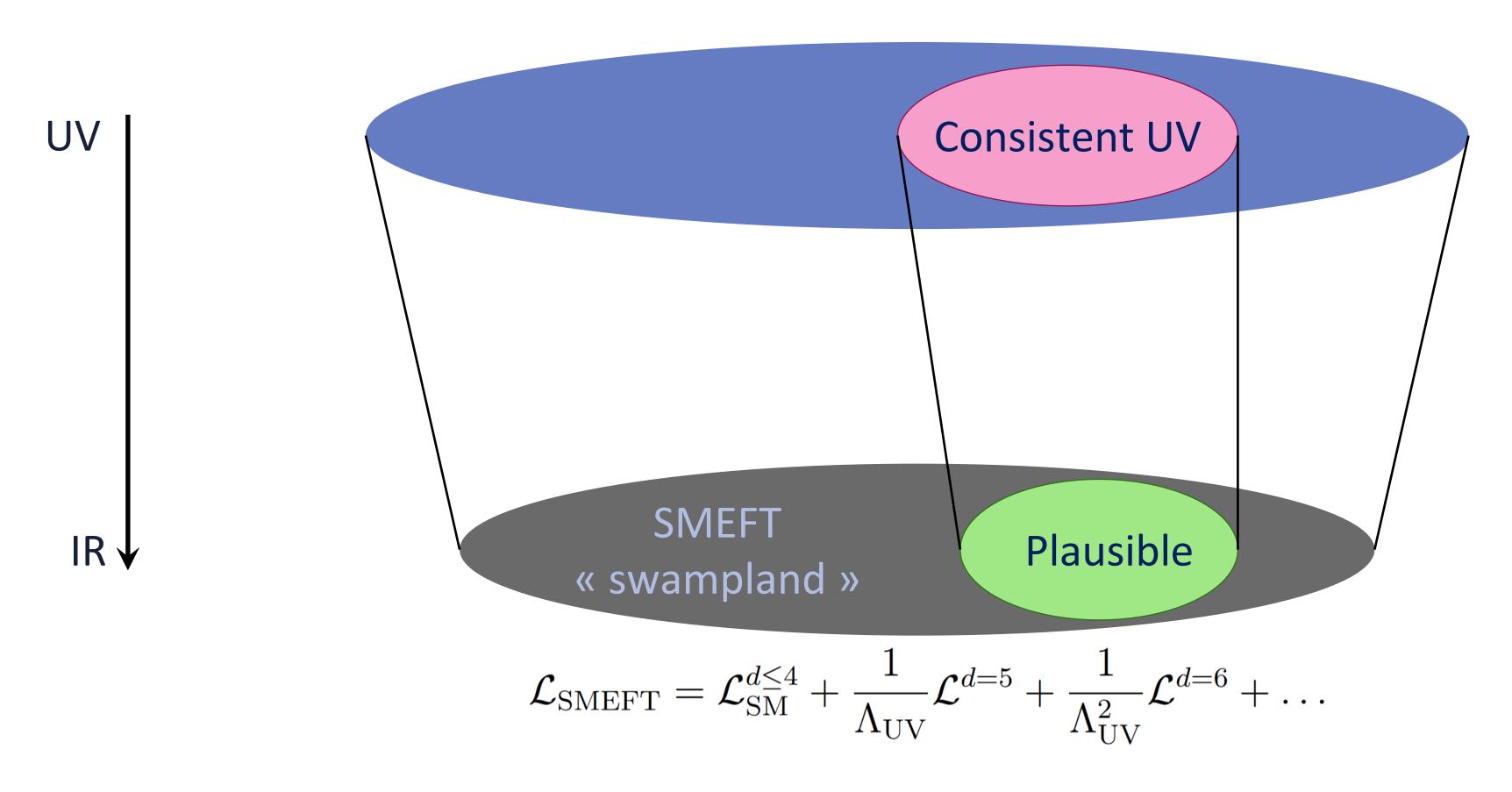
$$\Delta A_{\tau} \sim \delta g_L^{Z\tau} \sim \left(\mathcal{C}_{H\ell}^{(1)[33]} + \mathcal{C}_{H\ell}^{(3)[33]} \right)$$

$$\Delta \left[g_{\tau}/g_{\mu} \right] \sim \mathcal{C}_{H\ell}^{(3)[33]}$$

Precision EW -> disentangle gauge structure of NP -> break degeneracies

The Importance of Being (UV-)Earnest

Not all SMEFT parameter space can be spanned by (consistent) UV models



Fits are *not* enough ... need to have a concrete UV picture in mind a.k.a a model!

Flavour non-universality

$$SU(4)_{[3+H]} \times SU(3)_{[12]} \times SU(2)_L \times U(1)_X \to SM$$

 $\longrightarrow U_1 \sim (3,1,2/3)$: best mediator to address charged B decay tensions

Flavour non-universality

$$SU(4)_{[3+H]} \times SU(3)_{[12]} \times SU(2)_L \times U(1)_X \to SM$$

 $\longrightarrow U_1 \sim (3,1,2/3)$: best mediator to address charged B decay tensions

$$\mathcal{L}_{\text{int}} \supset \frac{g_4}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \ell_L^3 \right) + \frac{g_4}{2\sqrt{6}} Z'_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} q_L^3 \right) - \frac{3}{2} \frac{g_4}{\sqrt{6}} Z'_{\mu} \left(\bar{\ell}_L^3 \gamma^{\mu} \ell_L^3 \right) + \text{ h.c.}$$

$$\begin{array}{c} \xrightarrow{\text{Tree-level}} & \mathcal{C}_{\ell q}^{(1)[3333]} = \mathcal{C}_{\ell q}^{(3)[3333]} = \frac{g_4^2 v^2}{8 M_U^2} & \mathcal{C}_{\ell q}^{(1)[3333]} = -\frac{g_4^2 v^2}{32 M_Z^2} \\ \end{array}$$
 Matching

Flavour non-universality

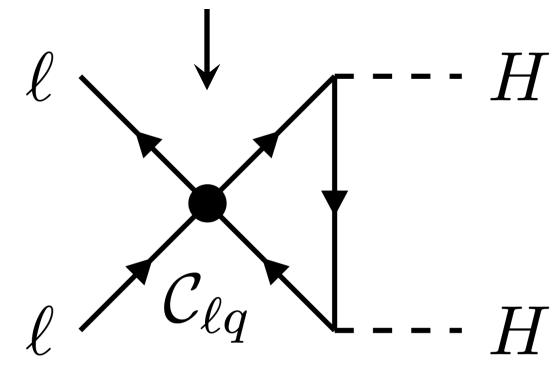
$$SU(4)_{[3+H]} \times SU(3)_{[12]} \times SU(2)_L \times U(1)_X \to SM$$

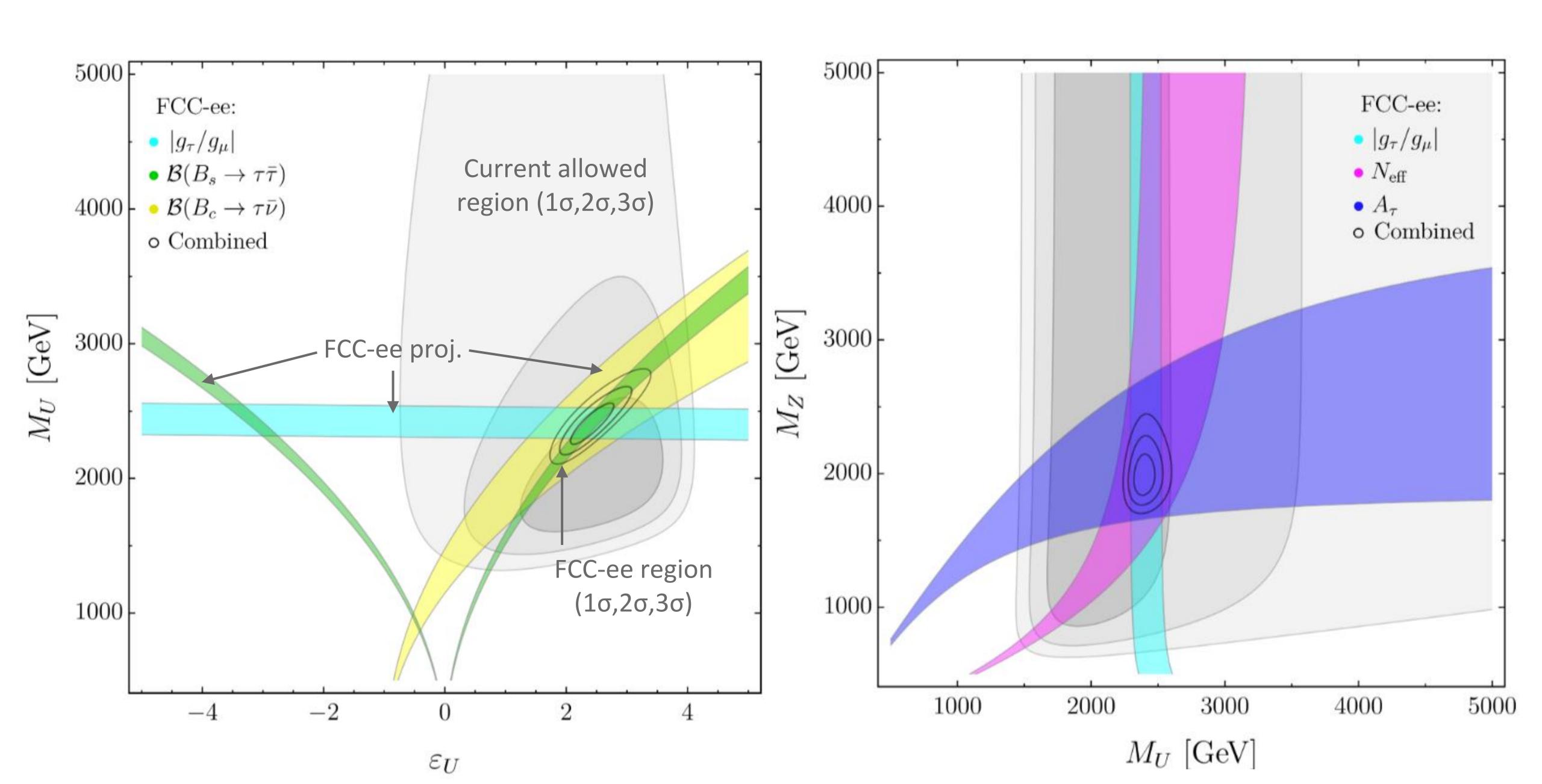
 $\longrightarrow U_1 \sim (3,1,2/3)$: best mediator to address charged B decay tensions

$$\mathcal{L}_{\text{int}} \supset \frac{g_4}{\sqrt{2}} U_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} \ell_L^3 \right) + \frac{g_4}{2\sqrt{6}} Z'_{\mu} \left(\bar{q}_L^3 \gamma^{\mu} q_L^3 \right) - \frac{3}{2} \frac{g_4}{\sqrt{6}} Z'_{\mu} \left(\bar{\ell}_L^3 \gamma^{\mu} \ell_L^3 \right) + \text{ h.c.}$$

$$\mathcal{C}_{\ell q}^{(1)[3333]} = \mathcal{C}_{\ell q}^{(3)[3333]} = \frac{g_4^2 v^2}{8 M_U^2} \qquad \mathcal{C}_{\ell q}^{(1)[3333]} = -\frac{g_4^2 v^2}{32 M_Z^2}$$

EW effect via running





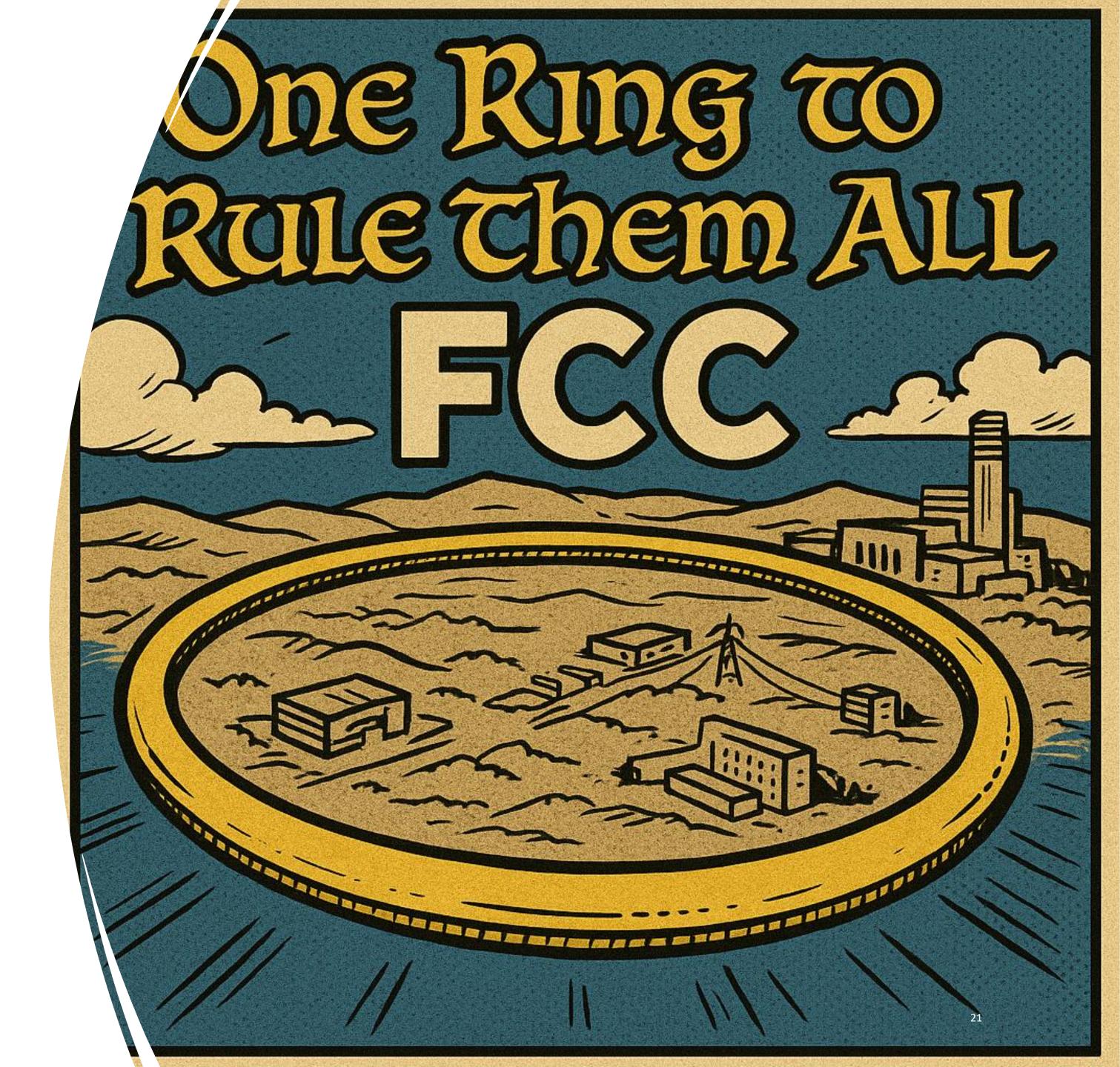
Take-Home Messages

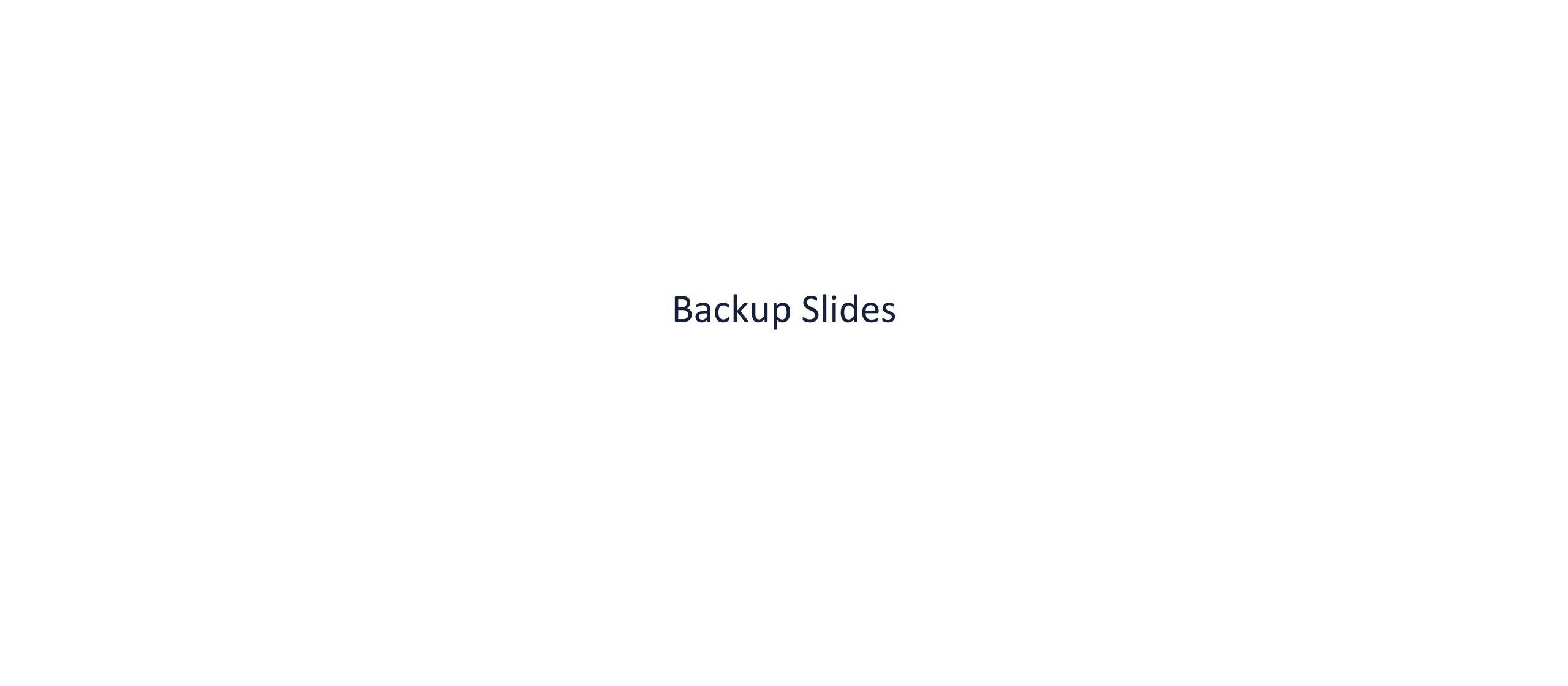
With no clear indication of the NP scale -> indirect + precision flavour & EW searches allow to probe, via RGE
effects, broad classes of well-motivated BSM models up to high scales

FCC-ee -> amazing machine for precision physics in several (redundancy) flavour & EW obs. (complementarity)
 + interplay with near future facilities: HL-LHC, B factories, ...

For more colourful plots -> look at the paper or come chat ;-)!

Thank you!





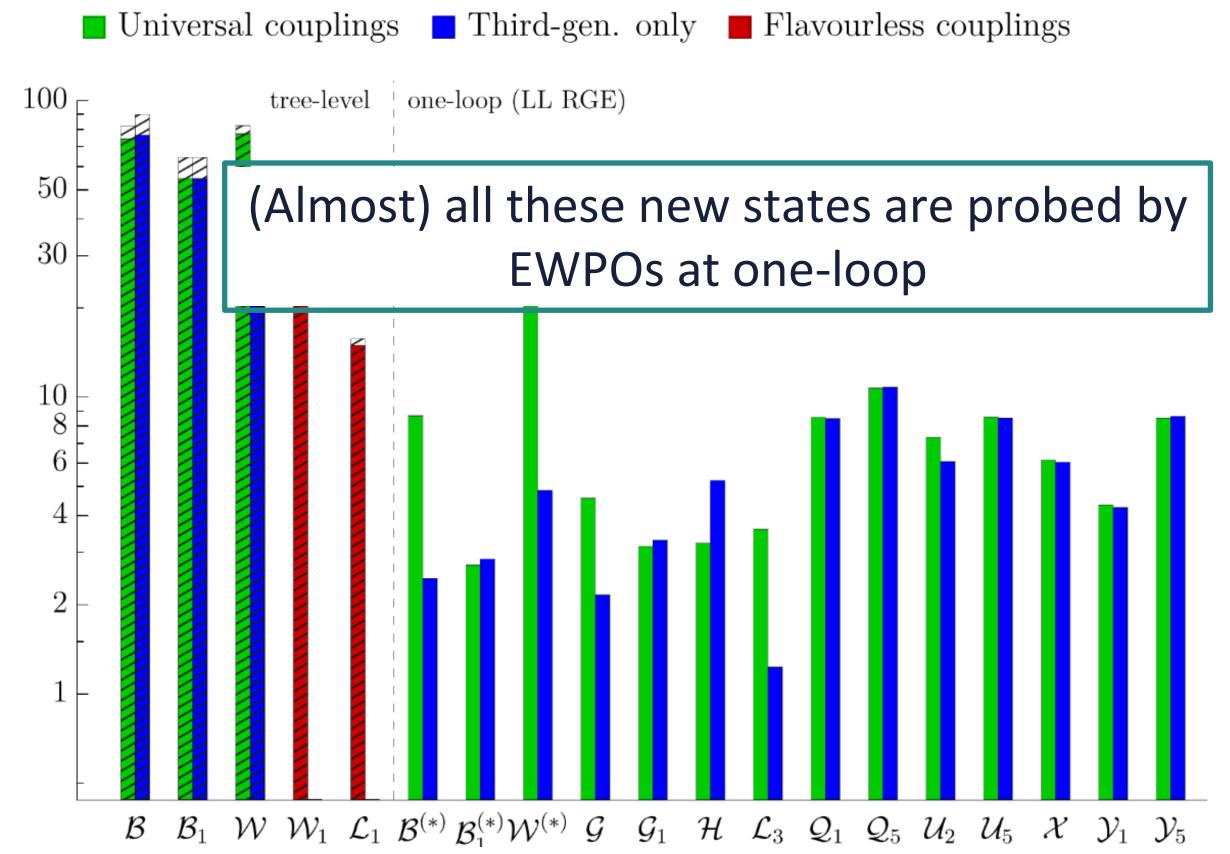
Illustrate the discovery potential of a high-intensity e^+e^- collider @ \mathbf{Z} pole via precision flavour measurements + flavour-EW interplay to constrain TeV-scale BSM models

BSM states that match to dim-6 SMEFT (@ tree-level)

Scalar	$(1,1)_0$	$\mathcal{S}_1 \ \left(1,1 ight)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	Ξ $(1,3)_0$	Ξ_1 $(1,3)_1$	$\Theta_1 \\ (1,4)_{\frac{1}{2}}$	$\Theta_3 \\ (1,4)_{\frac{3}{2}}$	
	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$\Pi_7 \\ (3,2)_{\frac{7}{6}}$	$\zeta \\ (3,3)_{-\frac{1}{3}}$			
	$\begin{array}{c} \Omega_1 \\ (6,1)_{\frac{1}{3}} \end{array}$	$\Omega_2 \ (6,1)_{-\frac{2}{3}}$	$\Omega_4 \\ (6,1)_{\frac{4}{3}}$	$\Upsilon \\ (6,3)_{\frac{1}{3}}$	$\Phi \\ (8,2)_{\frac{1}{2}}$				Ŋ
Fermion	$N \ (1,1)_0$	$E \\ (1,1)_{-1}$	$\begin{array}{c} \Delta_1 \\ (1,2)_{-\frac{1}{2}} \end{array}$			$\frac{\Sigma_1}{(1,3)_{-1}}$			Γ
		$D \\ (3,1)_{-\frac{1}{3}}$			$Q_7 \\ (3,2)_{\frac{7}{6}}$		$T_2 \ (3,3)_{\frac{2}{3}}$		
Vector	$\left \begin{array}{c} \mathcal{B} \\ \left(1,1\right)_0 \end{array} \right $	$\mathcal{B}_1 \ \left(1,1 ight)_1$	\mathcal{W} $(1,3)_0$			$\mathcal{G}_1 \ \left(8,1 ight)_1$	$\mathcal{H} \\ \left(8,3\right)_0$	$\mathcal{L}_1 \\ (1,2)_{\frac{1}{2}}$	
	$\begin{array}{ c c } \mathcal{L}_3 \\ (1,2)_{-\frac{3}{2}} \end{array}$	$\mathcal{U}_2 \ (3,1)_{rac{2}{3}}$	$\mathcal{U}_5 \ (3,1)_{rac{5}{3}}$	$\mathcal{Q}_1 \ (3,2)_{rac{1}{6}}$	$Q_5 \ (3,2)_{-rac{5}{6}}$	$\mathcal{X} \\ (3,3)_{\frac{2}{3}}$	$\mathcal{Y}_1 \\ (\bar{6},2)_{\frac{1}{6}}$	$\mathcal{Y}_5 \ (ar{6},2)_{-rac{5}{6}}$	

"Granada Dictionary"

de Blas, Criado, Perez-Victoria, Santiago [1711.10391]



See also Allwicher, McCullough & Renner [2408.03992]

Observable	SM	Current value [14]	Pre-FCC projection	FCC-ee expected
$ g_ au/g_\mu $	1	1.0009 ± 0.0014	_	±0.0001 [15]
$ g_ au/g_e $	1	1.0027 ± 0.0014	_	± 0.0001 [15]
corr.		0.51		
$\mathcal{B}(\tau \to \mu \bar{\mu} \mu)$	0	$< 2.1 \times 10^{-8}$	$< 0.37 \times 10^{-8} \ [*] \ [16]$	$< 1.5 \times 10^{-11} \ [*] \ [15]$
R_D	0.298 ± 0.004	0.342 ± 0.026 [17]	±3.0% [16]	
$R_{D}*$	0.254 ± 0.005	0.287 ± 0.012 [17]	$\pm 1.8\% [16]$	
corr.		-0.39		
$\mathcal{B}(B_c o au ar{ u})$	$(1.95 \pm 0.09) \times 10^{-2}$	< 0.3 (68%C.L.)	_	±1.6% [8]
$\mathcal{B}(B \to K \nu \bar{\nu})$	$(4.44 \pm 0.30) \times 10^{-6}$	$(1.3 \pm 0.4) \times 10^{-5}$	±14% [16]	±3% [7]
$\mathcal{B}(B \to K^* \nu \bar{\nu})$	$(9.8 \pm 1.4) \times 10^{-6}$	$< 1.2 \times 10^{-5} \ (68\% C.L.)$	$\pm 33\% [16]$	±3% [7]
$\mathcal{B}(B \to K \tau \bar{\tau})$	$(1.42 \pm 0.14) \times 10^{-7}$	$< 1.5 \times 10^{-3} (68\% C.L.)$	$<2.7 imes10^{-4}$	±20% [**] [18]
$\mathcal{B}(B \to K^* \tau \bar{\tau})$	$(1.64 \pm 0.06) \times 10^{-7}$	$< 2.1 \times 10^{-3} \ (68\% C.L.)$	$< 6.5 \times 10^{-4} \ [*] \ [16]$	±20% [**] [18]
$\mathcal{B}(B_s o auar{ au})$	$(7.45 \pm 0.26) \times 10^{-7}$	$< 3.4 \times 10^{-3} \ (68\% C.L.)$	$< 4.0 \times 10^{-4} \ [*] \ [16]$	±10% [**] [18]
$\Delta M_{B_s}/\Delta M_{B_s}^{ m SM}$	1	$\pm 7.6\%$	$\pm 3.3\% [19]$	±1.5% [19]
$\mathcal{B}(B \to K \tau \bar{\mu})$	0		$< 1.0 \times 10^{-6} $ [*] [20]	
$\mathcal{B}(B_s \to \tau \bar{\mu})$	0		$< 1.0 \times 10^{-6} $ [*] [20]	

Table 1: List of the flavor observables we consider in our analysis, with corresponding SM predictions, current experimental values, and expected future sensitivities before the start of FCC-ee and after its completion (see text for more details). The entries marked with [*] are upper bounds in the absence of a signal; the entries marked with [**] are relative errors assuming an enhanced rate over the SM expectation (by a factor ≥ 3); the other entries are relative errors assuming the SM value.

Observable	Relative uncertainty	Observable	Relative uncertainty
Γ_Z	1.0×10^{-5}	A_{b}	2.3×10^{-4}
$\sigma_{ m had}^0$	9.6×10^{-5}	$A_{ au}$	1.4×10^{-3}
$R_{m{b}}$	3.0×10^{-4}	m_W	4.6×10^{-6}
$R_{m{\mu}}$	5.0×10^{-5}	Γ_{W}	5.1×10^{-4}
R_e	3.0×10^{-4}	$\mathcal{B}(W \to \tau \nu)$	3.0×10^{-4}
$R_{ au}$	1.0×10^{-4}	$\mu(H \to b\bar{b})$	3.0×10^{-3}
$N_{ m eff}$	0.6×10^{-3}	$\mu(H \to \tau \bar{\tau})$	9.0×10^{-3}

Table 2: Expected relative uncertainties for the relevant EWPOs at FCC-ee used in our analysis. For Z- and W-decay observables, the numbers are taken from [21], rescaled for 4 IPs and 205 ab⁻¹ integrated luminosity (Z pole). The projection for the effective number of neutrinos N_{eff} is taken from [22] and adapted similarly. The projection for Higgs signal strengths follows [23].

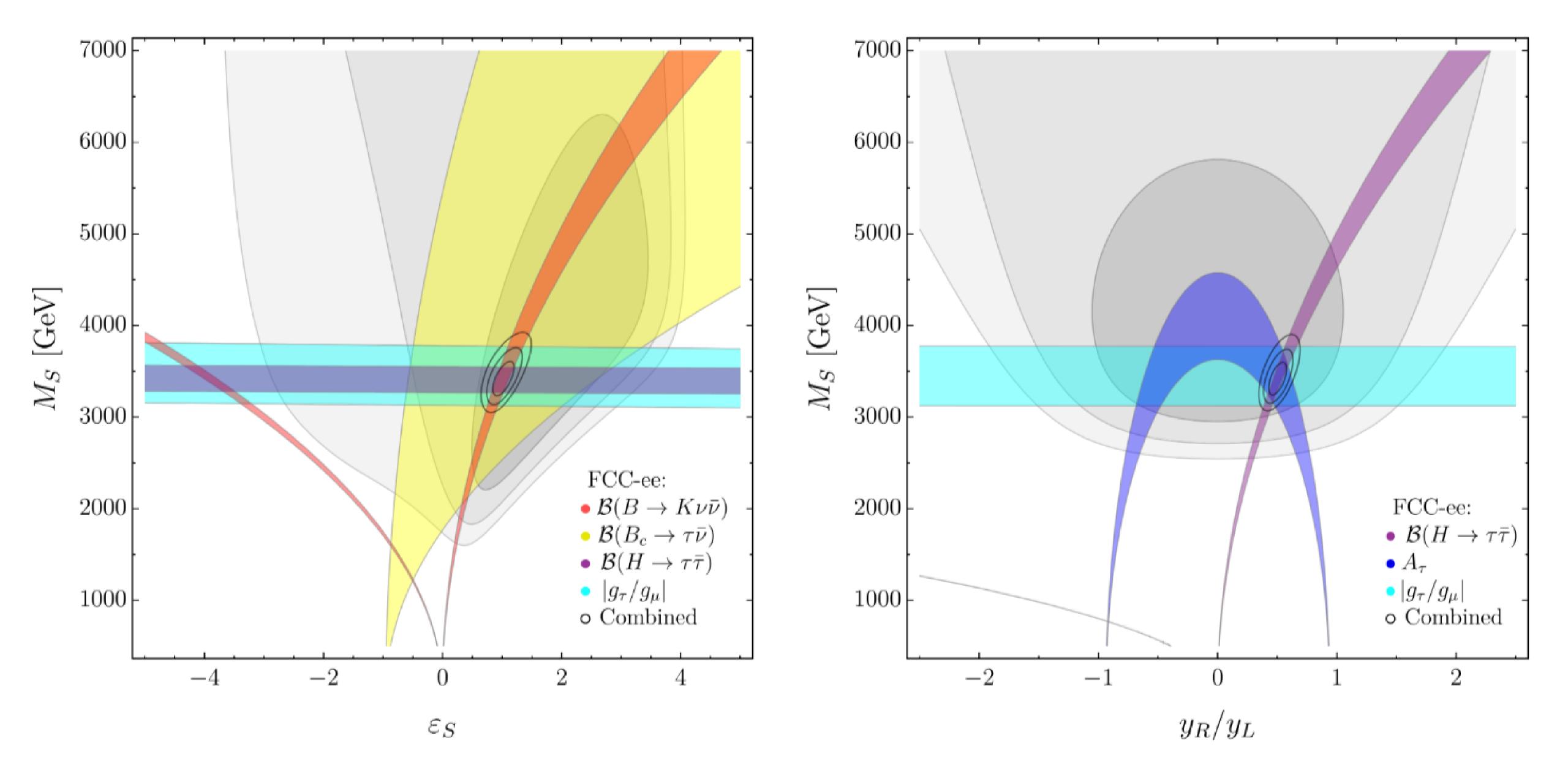
Simplified Models: Scalar Leptoquarks

Case II:

$$\mathcal{L}_{S_1} \supset iy_L S_1 \left(\bar{q}_L^{c3} \sigma_2 \ell_L^3\right) + y_R S_1 \left(\bar{u}^{3c} e_R^3\right) + \text{h.c.}$$

$$\begin{array}{l} \text{Tree-level} \\ & \xrightarrow{\text{Matching}} \end{array} \begin{array}{l} \mathcal{C}_{lq}^{(1)[3333]} = -\frac{v^2}{2} \frac{y_L^* y_L}{4 M_S^2}, \qquad \mathcal{C}_{lq}^{(3)[3333]} = \frac{v^2}{2} \frac{y_L^* y_L}{4 M_S^2} \\ \mathcal{C}_{lequ}^{(1)[3333]} = -\frac{v^2}{2} \frac{y_R y_L^*}{2 M_S^2}, \qquad \mathcal{C}_{lequ}^{(3)[3333]} = \frac{v^2}{2} \frac{y_R y_L^*}{8 M_S^2} \end{array} \quad \mathcal{C}_{eu}^{[33333]} = -\frac{v^2}{2} \frac{y_R^* y_R}{2 M_S^2} \\ \mathcal{C}_{lequ}^{(1)[3333]} = -\frac{v^2}{2} \frac{y_R y_L^*}{2 M_S^2}, \qquad \mathcal{C}_{lequ}^{(3)[3333]} = \frac{v^2}{2} \frac{y_R y_L^*}{8 M_S^2} \end{array} \quad \mathcal{C}_{eu}^{[33333]} = -\frac{v^2}{2} \frac{y_R^* y_R}{2 M_S^2} \end{array}$$

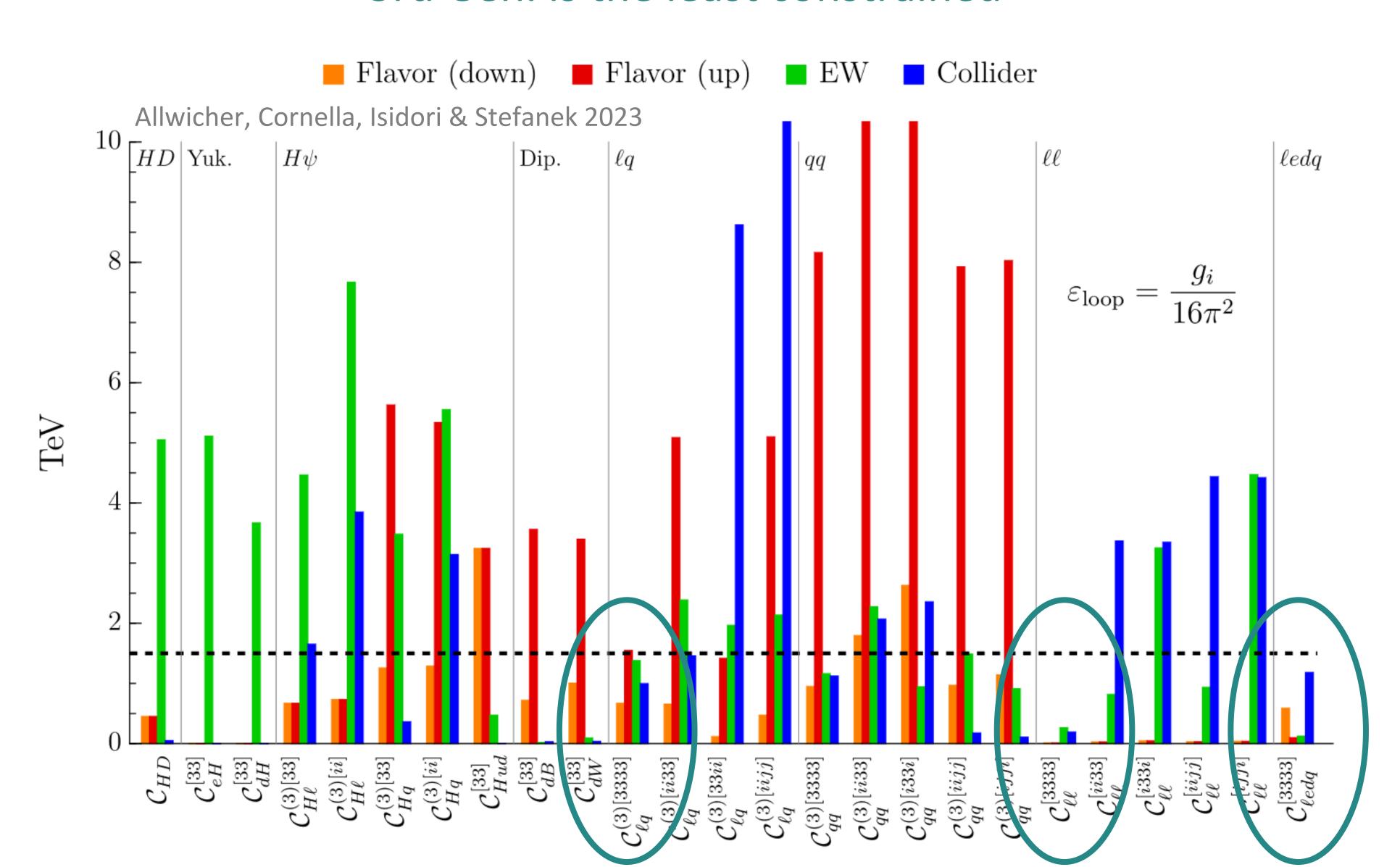
Benchmark:
$$\{y_L=2\,,\;M_S=3.4\;\mathrm{TeV}\,,\;y_R=1\,,\;arepsilon_S=1\,\}$$



Back to Flavour

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}} + \sum_{d \geq 5} \sum_{i} rac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

3rd Gen. is the least constrained



Simplified Models: Vector Leptoquarks

Case I*: $U_1 \sim (3,1,2/3)$ and Z' (SU(4)-inspired construction + R_D)

$$\mathcal{L}_{\rm int} \ \supset \ \frac{g_4}{\sqrt{2}} U_\mu \left(\bar{q}_L^3 \gamma^\mu \ell_L^3 \right) + \frac{g_4}{2\sqrt{6}} Z_\mu' \left(\bar{q}_L^3 \gamma^\mu q_L^3 \right) - \frac{3}{2} \frac{g_4}{\sqrt{6}} Z_\mu' \left(\bar{\ell}_L^3 \gamma^\mu \ell_L^3 \right) + \ \text{h.c.} \qquad \textit{(NP in 3rd gen.)} \ \ [\text{see Joe's talk}]$$

Tree-level
$$\mathcal{C}_{\ell q}^{(1)[3333]} = \mathcal{C}_{\ell q}^{(3)[3333]} = \frac{g_4^2 v^2}{8 M_U^2} \qquad \qquad \mathcal{C}_{\ell q}^{(1)[3333]} = -\frac{g_4^2 v^2}{32 M_Z^2}$$
 Matching

Benchmark:
$$\{g_4=2\,,\ M_U=2.4\ {\rm TeV}\,,\ M_Z=2\ {\rm TeV}\,,\ \varepsilon_U=2.4\,,\ \varepsilon_Z=0.9\}$$

- Similar benchmark as in the EFT analysis <--> B discrepancies
- Compatible with direct searches

^{*}Also Scalar LQ and VLF in the paper!

Simplified Models: Vector Leptoquarks

Case I*: $U_1 \sim (3,1,2/3)$ and Z' (SU(4)-inspired construction + R_D)

$$\mathcal{L}_{\rm int} \ \supset \ \frac{g_4}{\sqrt{2}} U_\mu \left(\bar{q}_L^3 \gamma^\mu \ell_L^3 \right) + \frac{g_4}{2\sqrt{6}} Z_\mu' \left(\bar{q}_L^3 \gamma^\mu q_L^3 \right) - \frac{3}{2} \frac{g_4}{\sqrt{6}} Z_\mu' \left(\bar{\ell}_L^3 \gamma^\mu \ell_L^3 \right) + \ \text{h.c.} \qquad \textit{(NP in 3rd gen.)} \quad [\text{see Joe's talk}]$$

Tree-level
$$\mathcal{C}_{\ell q}^{(1)[3333]} = \mathcal{C}_{\ell q}^{(3)[3333]} = \frac{g_4^2 v^2}{8 M_U^2} \qquad \qquad \mathcal{C}_{\ell q}^{(1)[3333]} = -\frac{g_4^2 v^2}{32 M_Z^2}$$
 Matching

Benchmark:
$$\{g_4=2,\ M_U=2.4\ {\rm TeV},\ M_Z=2\ {\rm TeV},\ \varepsilon_U=2.4,\ \varepsilon_Z=0.9\}$$

- Similar benchmark as in the EFT analysis <--> B discrepancies
- Compatible with direct searches

^{*}Also Scalar LQ and VLF in the paper!