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SM explains mass generation : 
EWPT

• A single scalar SU(2) doublet Φ = !!
!" , 

• With 𝜇"	< 0, λ > 0,
𝑉 Φ = −𝜇!	(Φ#Φ) +

𝜆
4
(Φ#Φ)!
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Fig 1. Smooth transition to the EW minimum
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BEH mechanism 

EW symmetry spontaneously broken to
SU(2)L x U(1)Y  à U(1)EM 

SSB

Ø Mass to particles (Fermions and Gauge 
Bosons) and scalar Higgs boson
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Thermal Evolution of 
the Universe

𝑉$%% =	𝑉&'$$	 + 𝑉()	 + 𝑉(*	 + 𝑉* + 𝑉+,-./

T-independent thermal corrections

At finite-temperature:

Fig 2.1: Finite-temperature potential: thermal evolution of vacuum
             as a smooth cross-over

𝑉!"" Φ

Φ

𝑉!"	 : One-loop Coleman Weinberg potential (Ref.2) 
𝑉!$	 :  UV-finite counter-term potential 
𝑉$	: One-loop thermal corrections 
𝑉%&'()	:  Resummation of the daisy diagrams 

𝑉*+,,	: Tree-level scalar potential
Smooth-crossover 
in SM

↓ 	 𝑇	𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠
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T = Tc

T > Tc

T < Tc

Fig 2.2: First-order phase transition of the universe

𝑉!"" Φ

Φ

• At very high temperatures:
EW symmetry preserved at v = 0

• Temperature decreased :
        -> Universe cooled -> develops non-zero vev
        -> EW symmetry breaks at Tn -> sudden change of vev
            -> Nucleation of vacuum bubbles

Strength of transition:       
0-
*-
≥ 1

First-order Phase Transition



q     EW baryogenesis  -> Strong first-order phase transition

q     Matter-Antimatter asymmetry  

        -> SM prediction:  6 . 10-19   ; Observed:  6 . 10-10

        -> Sakharov conditions 

            (B, C and CP violation + Out-of-Thermal-Equilibrium Process)

ü   BSM (extended) Higgs sector required!
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What are we looking for?



Two-Higgs-Doublet Model 
(2HDM)
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Z2 symmetry : 
Φ1 →Φ1
Φ2 → −Φ2

I, II, III, IV

In mass basis:   
→   5 physical scalar fields (h, H, A, 𝐻±) 
       diagonalised by α and β, 
→ 3 would-be-Goldstone bosons (𝐺0, 𝐺±) 

• Non-trivial structure of the scalar potential

SSB

Art credit: Kateryna RadchenkoFig 3: Representation of minima structure of 2HDM (or BSM) scalar potential
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Constraints on 
2HDM Parameter Space

Free parameters: 
tan β,  cos (β - α), 𝑣, 𝑚$ , 𝑚%,  𝑚%

±, 𝑚&,	 𝑚'"
"

• cos (β - α) → 0

• Light CP-even Higgs h has SM-like couplings of h125  

at the lowest order

• Possible in both decoupling and non-decoupling 

regime

Alignment limit:

Theoretical constraints:

• Vacuum stability and boundedness-from-
below

• Perturbative unitarity

Experimental constraints:

• Electroweak precision observables
• Constraints are from the limits from searches 

for additional Higgs bosons
• Measurements of the properties of h125

• Flavour Constraints

Enters in self-couplings -> barrier shape



Allowed Data
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Mass splittings

Fig 4:  SFOEWPT strength depends on the mass splittings, here the free 
parameters vary as 1	 ≤ tan 𝛽	 ≤ 50 	and	150	 ≤ 𝑚" ≤	 1400 GeV.

• Larger mass splittings mA – mH driven by the 
quartic couplings in the scalar potential correlate 
to stronger first-order phase transitions.

• For region 1: mass splitting range: 100 – 200 GeV
• For region 2: mass splitting range: 150 – 400 GeV 

• This dependence is constrained by perturbative 
unitarity.

1. mA = m𝐻± 
2. mH = m𝐻±

Key Regions:
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SFOEWPT in 
(mH, cos(β-α)) plane Allowed Data

For low mass values mH around 200 Gev:

• SFOEWPT occurs for wide range of cos(β-α) 
values

• Both CP-even neutral Higgs bosons h and H 
take part in the EW phase transition → 
enhanced thermal corrections → relatively 
higher strengths

For higher mass values mH (upper bound of 800 GeV):

• SFOEWPT occurs for cos(β-α) → 0

• H tends to decouple: only h drives the EW phase 
transition 

Fig 5:  SFOEWPT for CP-even heavy Higgs mass values, here the free parameters 
vary as 1	 ≤ tan 𝛽	 ≤ 50
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Type	I:	mH=	157.3	GeV	~		m𝐻±=	151	GeV,	mA	=	500	GeV,		tan	β	=	19.2,		M = 156.2 GeV 

SFOEWPT vs cos (β-α)
for lower mH

Type	I:	mH=	177.3	GeV	,		m𝐻±=	155.7	GeV,	mA	=	564	GeV,		tan	β	=	8.46,		M	=	176	GeV

Fig 6a and b: Variation of strength with cos(β-α) for lower CP-even Higgs masses to correlate the SFOEWPT parameter space close to as well 
as away from alignment limit

• SFOEWPT occurs for wide range of cos (β-α), strength 
increasing as we go away from the alignment limit
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Type	I:	mH=	401.6	GeV,	mA	~	m𝐻±>	600	GeV,	tan	β	=	7.7,	M	=	400.6 GeV

SFOEWPT vs cos (β-α)
for higher mH

Type	I:	mH=	517.4	GeV,	mA	~	m𝐻±>	700	GeV,	tan	β	=	1.68,	M	=	513.5 GeV

Fig 7a and b: Variation of strength with cos(β-α) for higher CP-even Higgs masses to correlate the SFOEWPT parameter space close to alignment limit

• SFOEWPT occurs strongest for cos (β-α) → 𝟎, i.e. strength highest at the alignment limit



Conclusions

12
Debankana Nath 2HDM : Alignment Limit and SFOEWPT || DESY THEORY WORKSHOP 2025

• Extended Higgs sectors can feature a SFOEWT, necessary for EW baryogenesis, can potentially 
lead to detectable GW signals

• The parameter region giving rise to a SFOEWPT in the 2HDM has a mass splitting between mA 
and mH of about 200 GeV

• For high values of mH (up to 800 GeV): SFOEWPT occurs close to the alignment limit
• For low values of mH (~ 200 GeV): SFOEWPT possible for larger deviations from the alignment 

limit

• Qualitatively, for SFOEWPT parameter points with higher mH, the strength of phase transition 
increases with cos (β-α),  and is highest near the alignment limit, whereas for the case of lower mH, 
the strength is higher as we go away from the alignment limit.



Next Steps:

• Extend the current results for the types II, III and IV of 2HDM

• Check for 𝜅1 variation for the above parameter regions showing SFOEWPT in correlation to the 

alignment limit

• Investigate the prospects for possible GW signals
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