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CP-violation

Why look into CP-violation?

Baryon-asymmetry of the universe → Sakharov conditions → additional
sources of CP-violation beyond SM is necessary.

It is possible to have additional CPV in models with extended scalar sectors.

Constraints/discovery come from :
1 EDM experiments
2 Collider experiments
3 Requirement from observed baryon-asymmerty.

I will explore the possibility of CP-violation in complex-singlet extension of
2HDM.
We would assume CPV is mostly in the BSM sector.
Explore the EDM bounds on CP-violating phases.
Interplay with other constraints : HiggsBounds, unitarity, DM observables etc.
Probe at collider.
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CP-violation in general 2HDM

The most general 2HDM scalar potential :
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For significant CPV in 2HDM in the exact alignment limit, hard breaking of
Z2 is requred i.e m2

12, λ6, λ7 6= 0. S. Kanemura, M.Kubota and K. Yagyu (Arxiv:2004.03943).
In the absence of Z2 symmetry, to avoid tree-level FCNC, Yukawa matrices
associated with the two doublets are assumed to be proportional to each
other. A. Pich and P. Tuzon (Arxiv:0908.1554).
Proportionality factor ζf can be complex (with phase θf ) and can be source
for CP-violation.
In Yukawa-aligned 2HDM, in the exact alignment limit, there is no CP-mixing
between the neutral scalars. θf , θ7 introduces CPV in Yukawa and trilinear
couplings.
125 GeV is completely CP-even and SM-like in the exact alignment.
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2HDMS potential-Z ′2 symmetric case

The model can accommodate a dark matter component when the complex scalar
is charged under a Z ′2 symmetry, as well as an excess such as 95 GeV observed at
CMS as well as LEP in γγ and bb̄ final state.

V2HDMS = V2HDM + VS

VS = m2
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2
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]
+
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(S†S)2 + S†S [λ′1Φ†1Φ1 + λ′2Φ†2Φ2] + [S2(λ′4Φ†1Φ1 + λ′5Φ†2Φ2) + h.c .]

+ [λ′6Φ†1Φ2S
†S + h.c] + [λ′7Φ†1Φ2S

2 + h.c] + [λ′8Φ†2Φ1S
2 + h.c]

Altough m′2S , λ′′1 , λ′′2 , λ′4, λ′5, λ′6 and λ′7, are all in principle complex, only
Im(λ′6), Im(λ′7) and Im(λ′8) can introduce mixing between scalar and

pseudoscalars, due to the presence of Φ†1Φ2 term.

Hard Z2-breaking of the 2HDM potential is essential here as well for
CP-violation.
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Z ′2 symmetric case - can we get dark matter and
CP-violation simultaneously?

In order to accommodate a dark matter candidate, we assume
S = vS + hS + iaS ie. at least one of the component fields acquire zero vev.

The necessary conditions are :
1) λ′4, λ′5, m′2S are real,
2) Re[λ′7] = Re[λ′8], Im[λ′7] = -Im[λ′8],
3) Im[λ′′1 ] = -2×Im[λ′′2 ].

In that case we will be left with three independent phases, of λ′6, λ′7 and λ′′1 .

In addition, to be in the alignment limit, one needs Re[λ′1] = -2×Re[λ′4].

5



Mass-matrix and CP-mixing in the neutral scalar sector

In the Higgs-basis

M2
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
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Constraints from Electric Dipole Moments

HEDM = −df

~S

|~S |
· ~E

Under the time reversal transformation:
T (~S) = −~S and T (~E ) = +~E the sign of this term HEDM is flipped. CP symmetry
is broken.
In EFT language,

LEDM = −df

2
f̄ σµν(iγ5)fFµν

The most recent bounds on electron EDM and neutron EDM

|de | < 4.1× 10−30e.cm T. S. Roussy et. al., Science 381, 46 (2023)

|dn| < 1.1× 10−26e.cm C. Abel et. al., Phys.Rev.Lett. 124 (2020) 8, 081803
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Bar-Zee diagrams

df = df (fermion) + df (Higgs) + df (gauge)

Each contribution df (X ) further constists of

df (X ) = dγf (X ) + dZ
f (X ) + dW

f (X )

The gauge boson loops contribute negligibly in the alignment limit.

The fermion and charged scalar loops contribute at equivalent strength.
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Results

In Z2-symmetric 2HDMS, there are three sources of CPV.
(1) θCP , (2) θ7, (3) θf

Source 1 : CPV phase in the neutral scalar mass-matrix,

θCP = tan−1
(

Im[λ′6+2λ′7]
Re[λ′6+2λ′7]

)
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Effect of both θCP and θ7, implying cancellation between the fermion and scalar
loop contributions.
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Vary θf , θ7, θCP all at the same time.
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Figure: mh2 = 280GeV, mh3 = mh± = 230 GeV.

(left):S. Kanemura, M.Kubota and K. Yagyu (Arxiv:2004.03943) Yukawa-aligned 2HDM scenario,
(right) 2HDMS scenario.

The fine-tuning observed in 2HDM is alleviated in its complex-singlet
extension.

The cancellation between diagrams is more effective when the scalar masses
are low.
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Interplay with DM phenomenology

Trilinear and quartic couplings between
DM pair and the scalars
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Interplay with other constraints

Low scalar mass region looks interesting from EDM as well as future collider
point of view.

What about HB, B-physics?

The free parameters ζ does open up allowed parameter space allowed by
HiggsBounds, B-physics in the low mass region, which is also consistent with
EDM bounds.
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Probing CP-violation at e+e− collider with trilinear
couplings

The CP-violation at the collider can be probed with CP-violating trilinear
couplings.

Simultaneous observation of the following processes will be a tell-tale sign of
CP-violation.

1 e+e− → h2h2h3 and e+e− → h2h3h3

2 e+e− → h4h4h3 and e+e− → h4h3h3

In absence of CP-violation h3 is the CP-odd scalar, h2-non-standard doublet-like
CP-even scalar and h4 singlet-like scalar.
Process (1) sensitive to θ7, Process (2) sensitive to θCP .
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Deviating from exact Alignment

Lyukawa = −
∑

f =u,d,e

{
f̄LMf fR +

3∑
j=1

f̄L

(
Mf

v
κj

f

)
fRH

0
j + h.c.

}
κ1

f = R11 + [R21 + i(−2If )R31] |ζf |e i(−2If )θf

Lhff =
Mf

v
|κf |f̄L(cos ξf + iγ5 sin ξf )fRh

Assuming CPV only in the 125
GeV Higgs, EDM bounds are
stringent by orders of magnitude
compared to future collider
sensitivity.

With other nonzero phases,
relative cancellation between
diagrams can lead to less
restrictive bounds on ξf from
EDM.
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Summary

While a CP-even 125 GeV Higgs is favored by the experiments, the CPV can
be lurking in the extended scalar sector.

It is possible to accommodate DM and CP-violation in 2HDMS, with
restrictions on complex couplings.

While EDM bounds put stringent constraint on individual CP-violating
phases, cancellation between multiple contributions to EDM can relax such
bounds.

CP phases can impact DM relic density.

It is possible to probe CP-violation through the trilinear coupling at the
future colliders.

Depending on the parameter space, EDM or collider bounds would be more
constraining.

Ongoing and Future directions

Probing such scenarios at future colliders, can we resolve the CP phases?

Can the amount of allowed CP-violation in this model, be sufficient for
baryogenesis?
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Thank You
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Back-Up

Conditions for DM in CPV-2HDMS with Z2 symmetry:
The coupling asssociated with term

h2aS → −vvS(Im[λ′7] + Im[λ′8]),

It can be zero, when λ′7 and λ′8 are both real. However, also with
Im[λ′7] = −Im[λ′8]

Yukawa matrices in the interaction basis :

y1
f ′(v1 + ζ ′f v2) = mf

Yukawa matrices in the Higgs basis :

y1
f =

mf

v
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Basis transformation

The fields Φ′1 and Φ′2 are defined in the interaction basis and Φ1 and Φ2 are
defined in the Higgs-basis. When the vevs of the interaction basis are as follows:

(〈Φ′01〉, 〈Φ′
0
2〉) = (v1e

iξ1/
√

2, v2e
iξ2/
√

2),

One can make the following unitary transformation to go to the Higgs-basis.

(
Φ1

Φ2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
e−iξ1 0

0 e−iξ2

)(
Φ′1
Φ′2

)
, (1)
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Comparison with the ‘usual’ 2HDM-types

Model ζu ζd ζl

Yukawa-aligned 2HDM Arbitrary complex Arbitrary complex Arbitrary Complex
Type-I 1/ tan β 1/ tan β 1/ tan β
Type-II 1/ tan β − tan β − tan β
Type-X 1/ tan β 1/ tan β − tan β
Type-Y 1/ tan β − tan β 1/ tan β
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Source of CPV in the general (Yukawa-aligned) 2HDM
set-up

Mass-matrix in the Higgs basis in 2HDM with hard Z2-breaking.

 λ1 Re[λ6] −Im[λ6]

Re[λ6] M2

v2 + 1
2
(λ3 + λ4 + Re[λ5]) − 1

2
Im[λ5]

−Im[λ6] − 1
2
Im[λ5] M2

v2 + 1
2
(λ3 + λ4 − Re[λ5])

 .

Alignment condition for h1 implies λ6 ≈ 0, m2
h = λ1v

2.
One can take Im[λ5] = 0 by using the phase redefinition,

(Φ†1Φ2)→ e−Arg [λ5]/2(Φ†1Φ2)
and we also redefine the other complex parameters as
µ2

3e
−Arg [λ5]/2 → µ2

3, λ6e
−Arg [λ5]/2 → λ6 and λ7e

−Arg [λ5]/2 → λ7
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Source of CPV in the general (Yukawa-aligned) 2HDM
set-up

Mass-matrix in the Higgs basis in 2HDM with hard Z2-breaking.

 λ1 0 0

0 M2

v2 + 1
2
(λ3 + λ4 + Re[λ5]) 0

0 0 M2

v2 + 1
2
(λ3 + λ4 − Re[λ5])

 .

Source of CPV in general/Yukawa-aligned 2HDM comes from

(1) Im(λ7) which introduces AH+H−-type vertex.

(2) phases of ζ-factors in the Yukawa sector.
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Minimization of the potential in the Higgs basis :

Φ1 =

(
G +

1√
2

(v + h0
1 + iG 0)

)
, Φ2 =

(
H+

1√
2

(h0
2 + ih0

3)

)
, S = vS + hS + iaS

m2
11 =

1

2
λ1v 2 +

1

2
λ
′
1v 2

S + Re[λ′4]v 2
S ,

Re[m2
12] =

1

2
(Re[λ6]v 2 + Re[λ′6]v 2

S + Re[λ′7]v 2
S + Re[λ′8]v 2

S )

Im[m2
12] =

1

2
(Im[λ6]v 2 + Im[λ′6]v 2

S + Im[λ′7]v 2
S − Im[λ′8]v 2

S )

m2
S = −(Re[m′2S ] +

1

2
λ
′
1v 2 + Re[λ′4]v 2) +

(
Re[λ′′1 ]

12
+

Re[λ′′2 ]

3
+

Re[λ′′3 ]

4

)
v 2

S

Im[m′2S ] = −
(

Im[λ′′1 ]

12
+

Im[λ′′2 ]

6

)
v 2

S + Im[λ′4]v 2

Dark Matter mass

m2
DM = −2Re[m′2S ]− 1

3
v2

S (Re[λ′′1 ] + Re[λ′′2 ])− 2v2Re[λ′4])
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Yukawa

But tree-level FCNC is introduced in the Yukawa Lagrangian:

Lyukawa =
2∑

k=1

(
Q̄Ly

†
u,k Φ̃kuR + Q̄Lyd,k ΦkdR + L̄Lye,k ΦkeR

)

yf ,2 = ζf yf ,1
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Yukawa sector

In terms of fermion mass eigenstates,

Lyukawa = −
∑

f =u,d,e

f̄LMf fR +
3∑

j=1

f̄L

(
Mf

v
κj

f

)
fRH

0
j + h.c .


−
√

2

v

{
−ζu ūR (M†uVCKM)dL + ζd ūL(VCKMMd )dR + ζe ν̄LMeeR

}
H+ + h.c .

κj
f = R1j + [R2j + i(−2If )R3j ] |ζf |e i(−2If )θf

In 2HDM, in the alignment limit (Rij = δij ), the CP-violation in the Yukawa
sector can not come from the CP-mixing in the scalar sector. It must come
from the phases of the Yukawa matrices.
In 2HDMS, there can be additional source of CP-violation from the scalar
sector mixing, since here Rij 6= δij .
In both cases the Yukawa couplings of the H0

1 does not contain any
CP-violating phases and therefore SM-like in the exact Alignment limit.

27



For the chosen bechmark, calculated EDM for 2HDMS scenario, constrained
2HDMS parameters.
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Figure: Orange : mhi ≈ 200 GeV, Maroon : mhi ≈ 600 GeV

I chose the benchmark in Yukawa-aligned 2HDM scenario with
[θu, θ7] =

[
π
2 ,

π
2

]
,mh2 = 280GeV, mh3 = mh± = 230 GeV.
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