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The problem and the solution

Problem

For 3d N = 4 Chern–Simons Matter theories, describe:

• Global symmetries;

• Vacua;

• Higgsing.

Solution

Magnetic quivers: pair of 3d N = 4 standard (non-CS) theories.
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3d N = 4 gauge theories in Type IIB

Worldvolume theory in [Hanany-Witten ’96]

brane 0 1 2 3 4 5 6 7 8 9

D3 − × × × ×
NS5 | × × × × × ×
D5 ⊗ × × × × × ×

SO(1, 9) → SO(1, 3)0123 × SO(3)456︸ ︷︷ ︸
≃SU(2)C

×SO(3)789︸ ︷︷ ︸
≃SU(2)H

Write the QFT using quivers.

Brane configuration Supermultiplet Quiver

N = 4 vector
U(N)

N = 4 bifund. hyper

N = 4 fund. hyper
1
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3d N = 4 Chern–Simons Matter theories in Type IIB

Consider the bound-state [Kitao-Ohta-Ohta ’98, Bergman-Hanany-Karch-Kol ’99]

(1, κ) =

{
1 NS5

κ D5s
=⇒ .

Brane configuration Supermultiplet Quiver

p1, κq
N = 4 twisted vector

U(N)

p1, κq N = 2 vector w/ CS +κ
U(N)

+κ

p1, κq
N = 2 vector w/ CS −κ

U(N)

−κ

p1, κq N = 4 bifund. twisted hyper

p1, κq
N = 4 fund. twisted hyper

1
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3d N = 4 Chern–Simons Matter theories in Type IIB
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3d N = 4 Chern–Simons Matter theories in Type IIB
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The moduli space of 3d N = 4 theories

• Moduli space of vacua = space of gauge invariant operators VEVs.

• For a 3d N = 4 theory it has two distinct branches:

− Coulomb branch (C): ⟨scalar of the vector multiplet⟩ ⇒ monopole1 VEV;

− Higgs branch (H): ⟨scalar of the hyper multiplet⟩ ⇒ meson VEV.

• They are associated to the 3d N = 4 R-symmetry factors SU(2)C × SU(2)H:

− C: moduli of D3 segments between NS5s;

− H: moduli of D3 segments between D5s.

• Moving D3 segments = operator VEV ⇒ Higgsing along C and H.

1For each U(1) ∈ gauge group we can dualize the associate field strength F with a scalar γ:

ϵµνρF
νρ

= ∂µγ .

Then γ → γ + const is a symmetry, called topological. Its charged objects are monopoles, which can be
built exponentiating a combination of γ and the scalar σ in the vector multiplet.

[Hanany-Witten ’96, Gaiotto-Witten ’08]
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The moduli space of 3d N = 4 CSM theories

• 3d N = 4 CSM theories also enjoy a SU(2)A × SU(2)B R-symmetry.

• The moduli space has two branches:

− A: moduli of D3 segments between NS5s;

− B: moduli of D3 segments between (1, κ)s.

• The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.

• Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQA and MQB
such that

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) .

• The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.

7/10



The moduli space of 3d N = 4 CSM theories

• 3d N = 4 CSM theories also enjoy a SU(2)A × SU(2)B R-symmetry.

• The moduli space has two branches:

− A: moduli of D3 segments between NS5s;

− B: moduli of D3 segments between (1, κ)s.

• The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.

• Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQA and MQB
such that

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) .

• The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.

7/10



The moduli space of 3d N = 4 CSM theories

• 3d N = 4 CSM theories also enjoy a SU(2)A × SU(2)B R-symmetry.

• The moduli space has two branches:

− A: moduli of D3 segments between NS5s;

− B: moduli of D3 segments between (1, κ)s.

• The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.

• Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQA and MQB
such that

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) .

• The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.

7/10



The moduli space of 3d N = 4 CSM theories

• 3d N = 4 CSM theories also enjoy a SU(2)A × SU(2)B R-symmetry.

• The moduli space has two branches:

− A: moduli of D3 segments between NS5s;

− B: moduli of D3 segments between (1, κ)s.

• The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.

• Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQA and MQB
such that

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) .

• The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.

7/10



The moduli space of 3d N = 4 CSM theories

• 3d N = 4 CSM theories also enjoy a SU(2)A × SU(2)B R-symmetry.

• The moduli space has two branches:

− A: moduli of D3 segments between NS5s;

− B: moduli of D3 segments between (1, κ)s.

• The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.

• Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQA and MQB
such that

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) .

• The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.

7/10



The moduli space of 3d N = 4 CSM theories

8/10



The moduli space of 3d N = 4 CSM theories

8/10



The moduli space of 3d N = 4 CSM theories

8/10



The moduli space of 3d N = 4 CSM theories

8/10



The moduli space of 3d N = 4 CSM theories
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The moduli space of 3d N = 4 CSM theories

Using

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) ,

employ MQA and MQB to study:

• CSM global symmetries;

• CSM mixed operators’ VEVs;

• CSM Higgsing pattern.

9/10



The moduli space of 3d N = 4 CSM theories

Using

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) ,

employ MQA and MQB to study:

• CSM global symmetries;

• CSM mixed operators’ VEVs;

• CSM Higgsing pattern.

9/10



The moduli space of 3d N = 4 CSM theories

Using

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) ,

employ MQA and MQB to study:

• CSM global symmetries;

• CSM mixed operators’ VEVs;

• CSM Higgsing pattern.

9/10



The moduli space of 3d N = 4 CSM theories

Using

C(MQA) ≃ A(CSM) ,

C(MQB) ≃ B(CSM) ,

employ MQA and MQB to study:

• CSM global symmetries;

• CSM mixed operators’ VEVs;

• CSM Higgsing pattern.

9/10



Conclusions and outlook

• What we did discuss:

− derivation of MQs to study the moduli space of 3d N = 4 CSM theories.

• What we did not discuss: extension to

− circular quivers;

− 3d N = 3 CSM theories;

− orthosymplectic CSM theories (including O3 orientifolds).

• Future directions:

− inclusion of other kinds of orientifolds;

− higher form symmetries interplay.

10/10



Conclusions and outlook

• What we did discuss:

− derivation of MQs to study the moduli space of 3d N = 4 CSM theories.

• What we did not discuss: extension to

− circular quivers;

− 3d N = 3 CSM theories;

− orthosymplectic CSM theories (including O3 orientifolds).

• Future directions:

− inclusion of other kinds of orientifolds;

− higher form symmetries interplay.

10/10



Conclusions and outlook

• What we did discuss:

− derivation of MQs to study the moduli space of 3d N = 4 CSM theories.

• What we did not discuss: extension to

− circular quivers;

− 3d N = 3 CSM theories;

− orthosymplectic CSM theories (including O3 orientifolds).

• Future directions:

− inclusion of other kinds of orientifolds;

− higher form symmetries interplay.

10/10



Thank you for your attention!
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