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The problem and the solution

Problem

For 3d N/ = 4 Chern-Simons Matter theories, describe:

e Global symmetries;
e Vacua;

e Higgsing.
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The problem and the solution

Problem

For 3d N/ = 4 Chern-Simons Matter theories, describe:

e Global symmetries;
e Vacua;

e Higgsing.

Solution

Magnetic quivers: pair of 3d N = 4 standard (non-CS) theories.
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3d N = 4 gauge theories in Type 11B

Worldvolume theory in [Hanany-Witten '96]

brane | 0 1 2 3 4 5 6 7 8 9
D3 — X X X X

NS5 | | x x X X X X

D5 ® X X X X X X
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3d N = 4 gauge theories in Type 11B

Worldvolume theory in [Hanany-Witten '96]

brane | 0 1 2 3 4 5 6 7 8 9
D3 — X X X X

NS5 | | x x X X X X

D5 ® X X X X X X

SO(179) — 80(173)0123 X SO(3)456 X S()(fi)ﬁ\‘()
—_——— ~———
~SU(2)¢ ~SU(2)x

Write the QFT using quivers.

Brane configuration Supermultiplet Quiver
O
’ﬂ“ N = 4 vector U

J:’l N = 4 bifund. hyper <

}&“ N = 4 fund. hyper D Dl
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3d N = 4 gauge theories in Type 11B

Brane configuration
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3d N = 4 gauge theories in Type 11B

Brane configuration Supermultiplet Quiver
’ﬁ‘{ N = 4 vector UC(])V)
J:F‘ N = 4 bifund. hyper <
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3d A = 4 Chern-Simons Matter theories in Type |I1B

Consider the bound-state [Kitao-Ohta-Ohta '98, Bergman-Hanany-Karch-Kol '99]

1 NS5 ,
(175) = E. L
x Dbs
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3d A = 4 Chern-Simons Matter theories in Type |I1B

Consider the bound-state [Kitao-Ohta-Ohta '98, Bergman-Hanany-Karch-Kol '99]

1 NS5 s
(1,r) = { ==

x Dbs
Brane configuration Supermultiplet Quiver
o N = 4 twisted vector U
v +H
’%7, N = 2 vector w/ CS +x O
o U(N)
, —K
e N = 2 vector w/ CS —k O
(1, 5) U(N)
% N = 4 bifund. twisted hyper —(
,('%T’, N =4 fund. twisted hyper D Dl
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3d A = 4 Chern-Simons Matter theories in Type |I1B

+K —K +K —K
O O O O
Ny Na N3 Ny

5/10



3d A = 4 Chern-Simons Matter theories in Type |I1B
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The moduli space of 3d N = 4 theories

e Moduli space of vacua = space of gauge invariant operators VEVs.

1For each U(1) € gauge group we can dualize the associate field strength F' with a scalar ~v:
6#,,,,F‘Vp =0u-

Then v — ~ + const is a symmetry, called topological. Its charged objects are monopoles, which can be
built exponentiating a combination of + and the scalar o in the vector multiplet.

[Hanany-Witten '96, Gaiotto-Witten '08]
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moduli space of 3d A/ = 4 theories

e Moduli space of vacua = space of gauge invariant operators VEVs.

e For a 3d N = 4 theory it has two distinct branches:

— Coulomb branch (C): (scalar of the vector multiplet) = monopole! VEV;

— Higgs branch (7{): (scalar of the hyper multiplet) = meson VEV.
e They are associated to the 3d N = 4 R-symmetry factors SU(2)¢ X SU(2):

— C: moduli of D3 segments between NS5s;

— H: moduli of D3 segments between D5s.

e Moving D3 segments = operator VEV =- Higgsing along C and .

1For each U(1) € gauge group we can dualize the associate field strength F' with a scalar ~:
6#,,,,F‘Vp =0 -

Then v — ~ + const is a symmetry, called topological. Its charged objects are monopoles, which can be
built exponentiating a combination of + and the scalar o in the vector multiplet.

[Hanany-Witten '96, Gaiotto-Witten '08]
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The moduli space of 3d A/ = 4 CSM theories

e 3d N =4 CSM theories also enjoy a SU(2)a x SU(2)g R-symmetry.
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The moduli space of 3d A/ = 4 CSM theories

e 3d N =4 CSM theories also enjoy a SU(2)a x SU(2)g R-symmetry.
e The moduli space has two branches:
— A: moduli of D3 segments between NS5s;
— B: moduli of D3 segments between (1, k)s.
e The operators are mixed = Higgsing along A and B is unclear in the QFT.
e Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQa and MQg
such that
C(MQa)
C(MQg)

1

A(CSM),
B(CSM).

1
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— B: moduli of D3 segments between (1, k)s.
e The operators are mixed = Higgsing along A and B is unclear in the QFT.
e Solution: auxiliary 3d N = 4 non-CS theories (magnetic quivers) MQa and MQg
such that
C(MQa)
C(MQg)

1

A(CSM),
B(CSM).

1

e The equality is at the level of the Hilbert series, which lists the gauge invariant
operators on a chosen branch of the moduli space.
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The moduli space of 3d A/ = 4 CSM theories
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The moduli space of 3d A/ = 4 CSM theories
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The moduli space of 3d A/ = 4 CSM theories

+K —K +K —K QKZZ) +K K +kK —K
O O O O O O O O
N N N N NS5 ¢ (1, %) N N N N
(1,K) + (1,K) + (1,—-K), (1,—-k), (1,-kK),
| K | v/~ | K | v x| Ny
[/ [/ | [/ /
A%
K K

=
=

HNE
2| Q=

8/10



moduli space of 3d N/ = 4 CSM theories
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moduli space of 3d N/ = 4 CSM theories
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The moduli space of 3d A/ = 4 CSM theories

Using

C(MQa) ~ A(CSM),
C(MQg) ~ B(CSM),

employ MQa and MQg to study:
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The moduli space of 3d A/ = 4 CSM theories

Using

C(MQa) ~ A(CSM),
C(MQg) ~ B(CSM),

employ MQa and MQg to study:

e CSM global symmetries;
e CSM mixed operators’ VEVs;
e CSM Higgsing pattern.
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Conclusions and outlook

e What we did discuss:

— derivation of MQs to study the moduli space of 3d N' = 4 CSM theories.
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Conclusions and outlook

e What we did discuss:

— derivation of MQs to study the moduli space of 3d N' = 4 CSM theories.

e What we did not discuss: extension to

— circular quivers;
— 3d N = 3 CSM theories;
— orthosymplectic CSM theories (including O3 orientifolds).

e Future directions:

— inclusion of other kinds of orientifolds;

— higher form symmetries interplay.
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Thank you for your attention!



