

Vacua, Symmetries, and Higgsing of Chern-Simons Matter Theories

Fabio Marino, University of Vienna

Based on ArXiv:2503.02744 and ArXiv:2509.11733 with Marcus Sperling and Sinan Moura Soysüren

 ${\sf DESY-Synergies\ towards\ the\ future\ Standtard\ Model}\\ 23rd\ {\sf September\ 2025}$

The problem and the solution

Problem

For 3d $\mathcal{N}=4$ Chern–Simons Matter theories, describe:

- Global symmetries;
- Vacua;
- Higgsing.

The problem and the solution

Problem

For 3d $\mathcal{N}=4$ Chern–Simons Matter theories, describe:

- Global symmetries;
- Vacua;
- Higgsing.

Solution

Magnetic quivers: pair of 3d $\mathcal{N}=4$ standard (non-CS) theories.

Worldvolume theory in [Hanany-Witten '96]

brane	0	1	2	3	4	5	6	7	8	9
D3 -	×	×	×	×						
NS5	×	×	×		×	×	×			
D3 – NS5 D5 ⊗	×	×	×					×	×	×

Worldvolume theory in [Hanany-Witten '96]

brane	0	1	2	3	4	5	6	7	8	9
D3 -	×	×	×	×						
D3 − NS5 D5 ⊗	×	×	×		×	×	×			
D5 ⊗	×	×	×					×	×	×

$$SO(1,9) \rightarrow SO(1,3)_{0123} \times \underbrace{\frac{SO(3)_{456}}{\simeq SU(2)_{\mathcal{C}}}}_{\simeq SU(2)_{\mathcal{C}}} \times \underbrace{\frac{SO(3)_{789}}{\simeq SU(2)_{\mathcal{H}}}}_{\simeq SU(2)_{\mathcal{H}}}$$

Worldvolume theory in [Hanany-Witten '96]

brane	0	1	2	3	4	5	6	7	8	9
D3 − NS5 D5 ⊗	×	×	×	×						
NS5	×	×	×		×	×	×			
D5 ⊗	×	×	×					×	×	×

$$SO(1,9) \rightarrow SO(1,3)_{0123} \times \underbrace{SO(3)_{456}}_{\simeq SU(2)_{\mathcal{C}}} \times \underbrace{SO(3)_{789}}_{\simeq SU(2)_{\mathcal{H}}}$$

Write the QFT using quivers.

Brane configuration	Supermultiplet	Quiver
	$\mathcal{N}=4$ vector	$\bigcup_{\mathrm{U}(N)}$
	$\mathcal{N}=4$ bifund. hyper)——(
<u>⊗~</u>	$\mathcal{N}=4$ fund. hyper	

Brane configuration	Supermultiplet	Quiver
	$\mathcal{N}=4$ vector	$\bigcup_{\mathrm{U}(N)}$
-	$\mathcal{N}=4$ bifund. hyper)——(
⊗~ _z	$\mathcal{N}=4$ fund. hyper)——

Brane configuration	Supermultiplet	Quiver
	$\mathcal{N}=4$ vector	$\bigcup_{\mathrm{U}(N)}$
	$\mathcal{N}=4$ bifund. hyper)——(
⊗~ _{v₂}	$\mathcal{N}=4$ fund. hyper	

Consider the bound-state [Kitao-Ohta-Ohta '98, Bergman-Hanany-Karch-Kol '99]

$$(1,\kappa) = \begin{cases} 1 \text{ NS5} \\ \kappa \text{ D5s} \end{cases} \implies \text{ / } .$$

Consider the bound-state [Kitao-Ohta-Ohta '98, Bergman-Hanany-Karch-Kol '99]

$$(1,\kappa) = \begin{cases} 1 \text{ NS5} \\ \kappa \text{ D5s} \end{cases} \implies / .$$

Brane configuration	Supermultiplet	Quiver
,(1, s) ,	$\mathcal{N}=4$ twisted vector	$\bigcup_{\mathrm{U}(N)}$
(1, n),	${\cal N}=2$ vector w/ CS $+\kappa$	$\bigcup_{\mathrm{U}(N)}^{+\kappa}$
(1, s)	$\mathcal{N}=2$ vector w/ CS $-\kappa$	$\bigcup_{\mathrm{U}(N)}^{-\kappa}$
/(1, s)	${\cal N}=4$ bifund. twisted hyper)——(
$\frac{\sqrt{\otimes \mathbb{Q}_{\mathbf{q}}}}{\sqrt{(1,\kappa)}}$	$\mathcal{N}=4$ fund. twisted hyper)———

• Moduli space of vacua = space of gauge invariant operators VEVs.

$$\epsilon_{\mu\nu\rho} F^{\nu\rho} = \partial_\mu \gamma \, .$$

Then $\gamma \to \gamma + {\rm const}$ is a symmetry, called topological. Its charged objects are monopoles, which can be built exponentiating a combination of γ and the scalar σ in the vector multiplet.

[Hanany-Witten '96, Gaiotto-Witten '08]

¹For each $U(1) \in$ gauge group we can dualize the associate field strength F with a scalar γ :

- Moduli space of vacua = space of gauge invariant operators VEVs.
- ullet For a 3d $\mathcal{N}=4$ theory it has two distinct branches:
 - Coulomb branch (\mathcal{C}): ⟨scalar of the vector multiplet⟩ ⇒ monopole¹ VEV;
 - **Higgs branch** (\mathcal{H}): $\langle scalar of the hyper multiplet <math>\rangle \Rightarrow meson VEV$.

$$\epsilon_{\mu\nu\rho}F^{\nu\rho} = \partial_{\mu}\gamma$$
.

Then $\gamma \to \gamma + {\rm const}$ is a symmetry, called topological. Its charged objects are monopoles, which can be built exponentiating a combination of γ and the scalar σ in the vector multiplet.

¹For each $U(1) \in$ gauge group we can dualize the associate field strength F with a scalar γ :

- Moduli space of vacua = space of gauge invariant operators VEVs.
- For a 3d $\mathcal{N}=4$ theory it has two distinct branches:
 - **Coulomb branch** (\mathcal{C}): $\langle \text{scalar of the vector multiplet} \rangle \Rightarrow \text{monopole}^1 \text{ VEV};$
 - **Higgs branch** (\mathcal{H}): ⟨scalar of the hyper multiplet⟩ ⇒ meson VEV.
- They are associated to the 3d $\mathcal{N}=4$ R-symmetry factors $SU(2)_{\mathcal{C}} \times SU(2)_{\mathcal{H}}$:
 - − C: moduli of D3 segments between NS5s;
 - $-\mathcal{H}$: moduli of D3 segments between D5s.

$$\epsilon_{\mu\nu\rho}F^{\nu\rho} = \partial_{\mu}\gamma$$
.

Then $\gamma \to \gamma + {\rm const}$ is a symmetry, called topological. Its charged objects are monopoles, which can be built exponentiating a combination of γ and the scalar σ in the vector multiplet.

¹For each $U(1) \in$ gauge group we can dualize the associate field strength F with a scalar γ :

- Moduli space of vacua = space of gauge invariant operators VEVs.
- For a 3d $\mathcal{N}=4$ theory it has two distinct branches:
 - **Coulomb branch** (\mathcal{C}): $\langle \text{scalar of the vector multiplet} \rangle \Rightarrow \text{monopole}^1 \text{ VEV};$
 - **Higgs branch** (\mathcal{H}): ⟨scalar of the hyper multiplet⟩ ⇒ meson VEV.
- They are associated to the 3d $\mathcal{N}=4$ R-symmetry factors $SU(2)_{\mathcal{C}} \times SU(2)_{\mathcal{H}}$:
 - − C: moduli of D3 segments between NS5s;
 - $-\mathcal{H}$: moduli of D3 segments between D5s.
- Moving D3 segments = operator VEV \Rightarrow Higgsing along \mathcal{C} and \mathcal{H} .

$$\epsilon_{\mu\nu\rho}F^{\nu\rho} = \partial_{\mu}\gamma$$
.

Then $\gamma \to \gamma + {\rm const}$ is a symmetry, called topological. Its charged objects are monopoles, which can be built exponentiating a combination of γ and the scalar σ in the vector multiplet.

¹For each $U(1) \in$ gauge group we can dualize the associate field strength F with a scalar γ :

[[]Hanany-Witten '96, Gaiotto-Witten '08]

• 3d $\mathcal{N}=4$ CSM theories also enjoy a $\mathrm{SU}(2)_{A} \times \mathrm{SU}(2)_{B}$ R-symmetry.

- 3d $\mathcal{N}=4$ CSM theories also enjoy a $SU(2)_{A} \times SU(2)_{B}$ R-symmetry.
- The moduli space has two branches:
 - A: moduli of D3 segments between NS5s;
 - B: moduli of D3 segments between $(1, \kappa)$ s.

- 3d $\mathcal{N}=4$ CSM theories also enjoy a $SU(2)_A \times SU(2)_B$ R-symmetry.
- The moduli space has two branches:
 - A: moduli of D3 segments between NS5s;
 - B: moduli of D3 segments between $(1, \kappa)$ s.
- The operators are $mixed \Rightarrow Higgsing along A$ and B is unclear in the QFT.

- 3d $\mathcal{N}=4$ CSM theories also enjoy a $SU(2)_{A} \times SU(2)_{B}$ R-symmetry.
- The moduli space has two branches:
 - A: moduli of D3 segments between NS5s;
 - B: moduli of D3 segments between $(1, \kappa)$ s.
- The operators are mixed ⇒ Higgsing along A and B is unclear in the QFT.
- \bullet Solution: auxiliary 3d $\mathcal{N}=4$ non-CS theories (magnetic quivers) MQA and MQB such that

$${m {\cal C}}(\mathsf{MQ}_\mathsf{A}) \simeq {m A}(\mathsf{CSM}) \, ,$$
 ${m {\cal C}}(\mathsf{MQ}_\mathsf{B}) \simeq \mathsf{B}(\mathsf{CSM}) \, .$

- 3d $\mathcal{N}=4$ CSM theories also enjoy a $SU(2)_A \times SU(2)_B$ R-symmetry.
- The moduli space has two branches:
 - A: moduli of D3 segments between NS5s;
 - B: moduli of D3 segments between $(1, \kappa)$ s.
- ullet The operators are **mixed** \Rightarrow Higgsing along A and B is unclear in the QFT.
- \bullet Solution: auxiliary 3d $\mathcal{N}=4$ non-CS theories (magnetic quivers) MQA and MQB such that

$${\cal C}(MQ_A) \simeq {\sf A}(CSM) \, ,$$
 ${\cal C}(MQ_B) \simeq {\sf B}(CSM) \, .$

• The equality is at the level of the **Hilbert series**, which lists the gauge invariant operators on a chosen branch of the moduli space.

Using

$${m {\cal C}}(\mathsf{MQ}_\mathsf{A}) \simeq {m A}(\mathsf{CSM}) \, ,$$
 ${m {\cal C}}(\mathsf{MQ}_\mathsf{B}) \simeq {m B}(\mathsf{CSM}) \, ,$

employ MQ_A and MQ_B to study:

Using

$$\begin{split} & \quad \pmb{\mathcal{C}}(\mathsf{MQ}_\mathsf{A}) \simeq \pmb{\mathsf{A}}(\mathsf{CSM}) \,, \\ & \quad \pmb{\mathcal{C}}(\mathsf{MQ}_\mathsf{B}) \simeq \mathsf{B}(\mathsf{CSM}) \,, \end{split}$$

employ MQ_A and MQ_B to study:

CSM global symmetries;

Using

$${\color{red} {\cal C}}(MQ_A) \simeq {\color{blue} {\sf A}}(CSM) \, ,$$
 ${\color{blue} {\cal C}}(MQ_B) \simeq {\color{blue} {\sf B}}(CSM) \, ,$

employ MQ_A and MQ_B to study:

- CSM global symmetries;
- CSM mixed operators' VEVs;

Using

$${f C}(\mathsf{MQ_A}) \simeq {f A}(\mathsf{CSM}) \, ,$$
 ${f C}(\mathsf{MQ_B}) \simeq {f B}(\mathsf{CSM}) \, ,$

employ MQ_A and MQ_B to study:

- CSM global symmetries;
- CSM mixed operators' VEVs;
- CSM Higgsing pattern.

Conclusions and outlook

- What we did discuss:
 - $-\,$ derivation of MQs to study the moduli space of 3d $\mathcal{N}=4$ CSM theories.

Conclusions and outlook

- What we did discuss:
 - $-\,$ derivation of MQs to study the moduli space of 3d $\mathcal{N}=4$ CSM theories.
- What we did not discuss: extension to
 - circular quivers;
 - 3d $\mathcal{N}=3$ CSM theories;
 - orthosymplectic CSM theories (including O3 orientifolds).

Conclusions and outlook

- What we did discuss:
 - derivation of MQs to study the moduli space of 3d $\mathcal{N}=4$ CSM theories.
- What we did not discuss: extension to
 - circular quivers;
 - 3d $\mathcal{N}=3$ CSM theories;
 - orthosymplectic CSM theories (including O3 orientifolds).
- Future directions:
 - inclusion of other kinds of orientifolds;
 - higher form symmetries interplay.

Thank you for your attention!