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Integrability
Field Theories

In D = 2, xµ = (t, x).
1 Lax integrability: the Euler-Lagrange equations are equivalent to the flatness of the

Lax connection L(t, x; z) = Lµ(t, x; z)dx
µ,

∂tLx(t, x; z)− ∂xLt(t, x; z) + [Lt(t, x; z),Lx(t, x; z)] = 0 .

2 Hamiltonian integrability: one of the possible ways to show the involution of
conserved charges is when [J.M. Maillet, ‘86]{

Lx,1(x, z),Lx,2(x
′, z′)

}
=

[
r12(z, z

′),Lx,1(x, z)
]
−

[
r21(z

′, z),Lx,2(x
′, z′)

]
−

(
r12(z, z

′) + r21(z
′, z)

)
∂xδ(x−x′) ,

where

X1 ≡ X ⊗ 1 = XA(TA ⊗ 1), X2 ≡ 1 ⊗X = XA(1 ⊗ TA),

r12 = rABTA ⊗ TB , r21 = rBATA ⊗ TB
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Dimensionally reduced GR
KK reduction of D = 4 GR to D = 2

Gravity with two space-like isometriesD = 4

D = 3

D = 2

S1

R+×SL(1) symmetry + dualisation of KK vector
R+×SL(2)(E) symmetry

S1

R+×SL(2)(E) symmetry

T 2

R+×SL(2)(MM) symmetry

Geroch ŜL(2)
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Dimensionally reduced GR
KK reduction of D = 4 GR to D = 2

The Lagrangian in D = 2 after dimensional reduction is

LD=2 = ∂µρ∂
µσ − 1

2
ρTr(PµP

µ) ,

with
V −1∂µV = Pµ +Qµ, V ∈ SL(2), Qµ ∈ so2, Pµ ∈ sl2 ⊖ so2 .

Equations of motion:

Dµ(ρP
µ) = 0 ,

□σ +
1

2
Tr(PµP

µ) = 0 ,

□ρ = 0 ,

supplemented by Virasoro constraints

Vµν = ∂µρ∂νσ − 1

2
∂ν∂µρ− 1

2
ρTr(PµPν) = 0 .
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Dimensionally reduced GR
Integrability of the undeformed model

In [B. Julia, H. Nicolai, ‘96] was proven the existence of an even larger duality-symmetry,

W n ŜL(2)
K (W)nK

(
ŜL(2)

) .

For integrability, define

Ŷ =
(
V̂(z) · Γ, eσ̂ K

)
∈ W n ŜL(2)

K (W)nK
(

ŜL(2)
) ,

with
V̂(z) ∈ ŜL(2), Γ ∈ W.

The conformal factor is rescaled:

σ̂ = σ − 1

2
ln(∂+ρ∂−ρ) ,

so that transforms as a proper scalar under conformal transformations.
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Dimensionally reduced GR
Integrability of the undeformed model

Generalised linear system + twisted self duality constraints:

Ŷ−1∂µŶ =
(
Γ−1V̂−1∂µ

(
V̂Γ

)
,
[
∂µσ̂ − Ω′(V̂, V̂−1∂µV̂)

]
K
)
∼= (Lµ(z), 0),

where

Lµ(z) ≡ Qµ +
1 + z2

1− z2
Pµ +

2z

1− z2
ϵµνP

ν +

(
1 + z2

1− z2
∂µρ

ρ
+

2z

1− z2
ϵµν

∂νρ

ρ

)
z
∂

∂z
.
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2
[L,L] = 0 ⇐⇒ Euler-Larange field equations.
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Deformed reduced GR
The deformation in D = 2

Deform the Lagrangian through introduction of auxiliary fields [MC, D. Osten, ‘25]. An
approach pioneered for the PCM by [C.Ferko, L. Smith, ‘24] and inspired by [E. Ivanov, B.
Zupnik, ‘02].

L̃ = −∂µρ∂
µσ − 2(χ1µ∂

µρ+ χ2µ∂
µσ + χµ

1χ2µ)

+ ρ

(
Tr

[
1

2
(PµP

µ) + 2Pµv
µ + vµv

µ

])
+ E(ν) ,

with

ν = (ηαβηγσ + ϵαβϵγσ)
(
χ1αχ2 γ − ρ

2
Tr(vαvγ)

)(
χ1 βχ2σ − ρ

2
Tr(vβvσ)

)
.

We define:

Pµ = −(Pµ + 2vµ) , Rµ = −(∂µρ+ 2χ2µ) , Sµ = −(∂µσ + 2χ1µ) .
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Deformed reduced GR
The deformation in D = 2

Equations of motion: dynamical for scalars , dynamical for conformal factor and algebraic
ones , {

∂µRµ = 0 ,

Dµ(ρPµ) = 0 ,{
∂µSµ = Tr

[
1

2
(PµP

µ) + 2Pµv
µ + vµv

µ

]
+Kµν(χ1,2, v, ρ)Tr(vµvν) ,

Pµ = −vµ +Kµ
ν(χ1,2, v, ρ)vν ,

∂µσ = −χ1µ +Kµ
ν(χ1,2, v, ρ)χ1 ν ,

∂µρ = −χ2µ +Kµ
ν(χ1,2, v, ρ)χ2 ν ,

where

Kµ
ν(χ1,2, v, ρ) = E′(ν)(δαµη

γν − ηµρϵ
ραϵγν)

(
χ1αχ2 γ − ρ

2
Tr(vαvγ)

)
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Deformed reduced GR
The deformation in D = 2: integrability

With the same parametrisations, the same twisted self-duality conditions, impose the
generalised linear system:

Ŷ−1∂µŶ =
(
Γ−1V̂−1∂µ

(
V̂Γ

)
,
[
S̃µ − Ω′(V̂, V̂−1∂µV̂)

]
K
)
∼= (L̃µ(z), 0) ,

where

L̃µ(z) ≡ Qµ +
1 + z2

1− z2
Pµ +

2z

1− z2
ϵµνPν +

(
1 + z2

1− z2
∂µρ

ρ
+

2z

1− z2
ϵµβRβ

)
z
∂

∂z
.

The flatness of this connection is equivalent to the EOMs [MC, D. Osten, ‘25].
Virasoro constraints stemming from the vanishing of the central term are

S̃± = −1

2
ρTr

(
v±v±
χ2±

+
K±

∓v∓v∓
χ2∓

)
,

and provides the EOMs.
On Hamiltonian integrability: we recover the same r-matrix of [D. Bernard, N.Regnault,
‘01].
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Coda

What we have seen today:
Integrable deformations of the D = 2 reduction of GR along commuting isometries.

Open questions:
Higher dimensional origin? [Work in progress...]
Chern-Simons embedding?
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