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Integrability

Field Theories

In D=2, z* = (t,x).
© Lax integrability: the Euler-Lagrange equations are equivalent to the flatness of the
Lax connection £(t,x; z) = £,(t, z; z)dz",

O Ly (t, x5 2) — 0 L1 (¢, x5 2) + [Le(t, 25 2), Lo (b, 25 2)] = 0.

@ Hamiltonian integrability: one of the possible ways to show the involution of
conserved charges is when [J.M. Maillet, ‘86]

{Sx,l(% Z)»ﬂx,g(x,7zl)} = [rg(z,z'),ﬂm,l(x,z)} — [TQ(Z,,Z),SQ:,;(JC’7Z')]
— (rg(z, 2" +ra(?, z)) 0:0(x—2"),

where

X1=X®1=X*Ta®1), X =10 X =X (1®Ta),

T2 = ABT, @ Ts , Tl = rPATy @ T
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KK reduction of D =4 GRto D = 2

The Lagrangian in D = 2 after dimensional reduction is
1
Lp=g = 0upd'c — EpTr(PMP“) ,

with
V'9,V=P,+Q. VESLR), Qu€s0s, P,cslyOso,.

Equations of motion:
Du(pP*) =0,
Oo + %Tr(PHP“) —0,
Up=0,

supplemented by Virasoro constraints

1 1
Viw = OupOyo — 58,,8“;) — ngr(PHPU) =0.
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Integrability of the undeformed model

In [B. Julia, H. Nicolai, ‘96] was proven the existence of an even larger duality-symmetry,

—

W x SL(2)
K(W)MK(S/L@)'

For integrability, define

—

W x SL(2)
K(W)MK(S/L(?))7

V= (f/(z) N o K) €
with

The conformal factor is rescaled:
1
G=0— 5'”(3#75—17)7

so that transforms as a proper scalar under conformal transformations.
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Integrability of the undeformed model

Generalised linear system + twisted self duality constraints:
VoY = (rlfﬂau (f;r) 7 [aua - Q’o},fﬂauv)] K) ~ (£,(2),0),
where

14 22 2z

Eu(Z)EQ#JFl_ZQP#JF

1+ 2% dup 2z 3”p> 0
== Z.
0z

L/PD v
1_ 2% +<1—22 p +1—z26“ p



Dimensionally reduced GR

Integrability of the undeformed model

Generalised linear system + twisted self duality constraints:

Yoy =|r v, (er) : [(%& - Q/(fi,f/’l&uf/)] K| 2(e.(2),

Virasoro constraints
where

1+ 22 2z

Su(z)EQuJFl_ZgPLLJFl_Z

v 1+ 22 0up 2z 0"p 0
e P+ <1—227 + 1—z26‘w7 92
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Dimensionally reduced GR

Integrability of the undeformed model

Generalised linear system + twisted self duality constraints:

Yoy =|r v, (er) : [a,ﬁ - Q/(fi,f/’l&uf/)] K| 2(e.(2),

Virasoro constraints

where
. 1+ 22 2z v 1+ 22 0up 2z 0"p 0
Cu(#) = Qut =t g g P + <1_227 tio e, ) e
Then

dg + %[Q, £]=0 <= Euler-Larange field equations.
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Deformed reduced GR

The deformation in D = 2

Deform the Lagrangian through introduction of auxiliary fields [MC, D. Osten, ‘25]. An
approach pioneered for the PCM by [C.Ferko, L. Smith, ‘24] and inspired by [E. Ivanov, B.
Zupnik, ‘02].

L= —0up0tc — 2(x1 0" p + x2,0"0 + X X21)

+p (Tr {%(P#P“) + 2P0 + v#v“]) + E(v),
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Deformed reduced GR

The deformation in D = 2

Deform the Lagrangian through introduction of auxiliary fields [MC, D. Osten, ‘25]. An
approach pioneered for the PCM by [C.Ferko, L. Smith, ‘24] and inspired by [E. Ivanov, B.
Zupnik, ‘02].

L=—=0upd"0 —2(x1u0"p + X20"0 + X X2)
+p (Tr B(P#P“) +2P,v" + v#v“]) +E(v),
with
v=n"n" 47 (Xl aX2y — gTr(UaU'v)) (Xl pX20 — gTr(v5v0)> :
We define:

Pu=—(Pu+2v.), Ru=—(Oup+2x24), Sp=—(0u0+2x14).
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Deformed reduced GR

The deformation in D = 2

Equations of motion: dynamical for scalars , dynamical for conformal factor and algebraic

ones ,
{ pP" =0,
{ 9,S" =Tr { (P, P") + 2P,v" + v, 0" | + K" (x1,2,v, p) Tr(vuvs)
H = —Uu + K (X1,27U7p)’1}u,
MO‘— _X1M+K (X1,27U7P)X1V7
Oup = —x2p + Ku" (X1,2,v, p)X20
where

K, (12,0, 0) = B W)™ =0 €™ (xraxas — £ Tr(vav,))
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Deformed reduced GR

The deformation in D = 2: integrability

With the same parametrisations, the same twisted self-duality conditions, impose the
generalised linear system:

Y710,y = (17070, (Vr), [$. - 00,V T100)| K) = (2u(2),0),

13



Deformed reduced GR

The deformation in D = 2: integrability

With the same parametrisations, the same twisted self-duality conditions, impose the
generalised linear system:

Y. = (r*lfﬂaﬂ (f/r) , [S# —QW, frlauf/)] K) =~ (£,(2),0),
where

1422 2z » 2 8 1o}
P, v — R -
1—22 “+1—226“P +(1—z2 p +1—z2€uﬁ “oz
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The deformation in D = 2: integrability

With the same parametrisations, the same twisted self-duality conditions, impose the
generalised linear system:

V0.9 = (07079, (Vr), [, - (0, V1 00)| K) = (24(2),0),
where
5 _ 1+ 2° 2z v 1+ 2% Oup 2z AR
’SH(Z):QH+1_22PH+1_22€HVP +<1 22%—1—1 2€/.LBR Z@.

The flatness of this connection is equivalent to the EOMs [MC, D. Osten, ‘25].

Virasoro constraints stemming from the vanishing of the central term are

Sy = flpTr (vivi + Kiﬂ};v;) )
2 X2+ X2F

and provides the EOMs.

On Hamiltonian integrability: we recover the same r-matrix of [D. Bernard, N.Regnault,
01].
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What we have seen today:

@ Integrable deformations of the D = 2 reduction of GR along commuting isometries.
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What we have seen today:

@ Integrable deformations of the D = 2 reduction of GR along commuting isometries.

Open questions:
o Higher dimensional origin? [Work in progress...]

@ Chern-Simons embedding?
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