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1) Loop Feynman integrals

2) Euler Integrals

3) Hypergeometric series

4) Holonomic D-modules

Parametric systems of partial differential 
equations with polynomial coefficients

Why Hypergeometric Functions?
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Why Hypergeometric Functions?
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Existing methods of numerical calculation of hypergeometric functions
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Appell F1 function



  

1) Solution in the neighborhood of a singular point.

2) The case of many variables.

3) Analytical continuation.

4) Practical applications, Hypergeometric functions of several variables.
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Method components
Our goal is to adapt—and actually modify—the Frobenius method for 

analytic continuation of hypergeometric functions. While Frobenius-based 
implementations have existed for Feynman integrals (DiffExp, SeaSyde, etc.), 

none have been purpose-built for hypergeometric systems.



  

Solution in the neighborhood of a singular point

the set S consists of the non-degenerate eigenvalues of the matrix A0. If several eigenvalues
are degenerate, the set S will include only the smallest of them.
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Solution in the neighborhood of a singular point
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Multiple variable case

integrability 
condition

the problem can be reduced to a problem of a 
lower dimension
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Analytic continuation
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         Lauricella functions
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Implemented in the PrecisionLauricella package using Wolfram Mathematica
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Conclusions
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New Numerical Method:
Developed a high-precision evaluation method for Lauricella functions.

One-Dimensional Frobenius Series:
Utilized one-dimensional generalized power series for analytic continuation, significantly simplifying 
and accelerating high-precision computations compared to multidimensional approaches.

Efficiency and Parallelism:
The specialized treatment of ε-dependence enhances computational speed and is well-suited for 
parallel processing in large-scale calculations.

Practical Implementation:
Implemented in the PrecisionLauricella package using Wolfram Mathematica, and successfully 
validated against alternative hypergeometric function evaluation tools.

https://bitbucket.org/BezuglovMaxim/precisionlauricella-package/src/main/

Future Directions:
Potential extensions to other classes of hypergeometric functions and direct applications in Feynman 
integral computations.



  

Thank you for your attention!
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