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While there exist various methods of computing decay rates, most analytical approaches fit
into basically two overarching categories:

Wave function techniques based on Path integral approaches based on
special solutions of the Schrédinger the (Euclidean) propagator, hinging
equation [1, 2, etc | on instanton calculus [3, 4, etc ]
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Why do both procedures yield identical results?
What is the relation between the two methods?
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_ Traditional instanton method [5] Andreassen, et al. (2017), PRD 95(8)

The ground state energy can be computed from the late-time behavior of the Euclidean
propagator:

Z(T) =ZFV

Dglz] exp <— o M)

Ey=—h li 711
0=, Og/ h

Z(O) =ZFV

For convenience, one chooses z; = zf = zpy [4,5]. One finds two important critical
trajectories: FV trajectory & “bounce” .
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N for real, unstable potentials, as the N
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Let us investigate the generic eigenvalue problem
HUy(z) = {_ V(z)} Wy(z) = EWy(z),

Restrict the view to a single-dimensional complex
contour I' parameterized by 7(s) with s € R.

Uy(nz) 27200 for z € Sy

He(s) = Egipy(s) is defined on R

> The normalizable eigenfunctions 1)(s) decay
at s-spatial infinity

Caveat: fAIW is non-Hermitian
— standard QM tools require slight modification
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Given the generic eigenvalue problem

with Uy(nz) 222% 0 for z € Si, one finds the
relation:

~ ( Master formula )
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