



## Establishing the relation between instantons and resonant states (based on arXiv:2507.23125)

DESY Theory Workshop 2025 Nils Wagner 24<sup>th</sup> September 2025

Supervisor: Prof. Dr. Björn Garbrecht

Research Group: T70 (TUM)



## Overarching goal

### Overarching goal

While there exist various methods of computing **decay rates**, most analytical approaches fit into basically **two overarching categories**:





While there exist various methods of computing **decay rates**, most analytical approaches fit into basically **two overarching categories**:

Wave function techniques based on special solutions of the **Schrödinger equation** [1, 2, etc.]





[3] Langer (1967), Annals Phys. 41(1)

[2] Berry & Mount (1972), RPT 35(1) [4] Callan & Coleman (1977), PRD 16(6)

While there exist various methods of computing **decay rates**, most analytical approaches fit into basically **two overarching categories**:



Wave function techniques based on special solutions of the **Schrödinger equation** [1, 2, etc.]



**Path integral** approaches based on the (Euclidean) propagator, hinging on **instanton** calculus [3, 4, etc.]





[3] Langer (1967), Annals Phys. 41(1)

[2] Berry & Mount (1972), RPT 35(1) [4] Callan & Coleman (1977), PRD 16(6)

While there exist various methods of computing **decay rates**, most analytical approaches fit into basically **two overarching categories**:



Wave function techniques based on special solutions of the **Schrödinger equation** [1, 2, etc.]



**Path integral** approaches based on the (Euclidean) propagator, hinging on **instanton** calculus [3, 4, etc.]

Why do both procedures yield identical results? What is the relation between the two methods?







$$K_{\rm E}(z_{\rm i}, z_{\rm f}; T) = \left\langle z_{\rm f} \left| \exp \left( -\frac{\widehat{H}T}{\hbar} \right) \right| z_{\rm i} \right\rangle$$

$$K_{\mathrm{E}}\!\left(z_{\mathrm{i}}, z_{\mathrm{f}}; T\right) = \sum_{\ell=0}^{\infty} \left\langle z_{\mathrm{f}} \left| \exp\left(-\frac{\widehat{H}T}{\hbar}\right) \right| \Psi_{\ell} \right\rangle \left\langle \Psi_{\ell} \left| z_{\mathrm{i}} \right\rangle$$

$$K_{\mathrm{E}}\!\left(z_{\mathrm{i}},z_{\mathrm{f}};T
ight) = \sum_{\ell=0}^{\infty} \overline{\Psi_{\ell}(z_{\mathrm{f}})} \, \Psi_{\ell}(z_{\mathrm{i}}) \, \exp\!\left(-rac{E_{\ell}T}{\hbar}
ight)$$

$$K_{\rm E}\!\left(z_{\rm i},z_{\rm f};T\right) = \sum_{\rm i=0}^{\infty} \overline{\Psi_{\ell}(z_{\rm f})}\,\Psi_{\ell}(z_{\rm i})\,\exp\!\left(-\frac{E_{\ell}T}{\hbar}\right) \xrightarrow{T\to\infty} {\rm const.} \times \exp\!\left(-\frac{E_{\rm 0}T}{\hbar}\right).$$



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \left[ K_{\mathbf{E}} \left( z_{\mathbf{i}}, z_{\mathbf{f}}; T \right) \right] \right\}.$$

$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_i}^{z(T)=z_f} \mathcal{D}_{\mathbf{E}}[z] \exp \left( -\frac{S_{\mathbf{E}}[z]}{\hbar} \right) \right\}.$$



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_i}^{z(T)=z_f} \mathcal{D}_{\mathbf{E}}[z] \exp \left( -\frac{S_{\mathbf{E}}[z]}{\hbar} \right) \right\}.$$





$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_i}^{z(T)=z_f} \mathcal{D}_{\mathbf{E}}[z] \exp \left( -\frac{S_{\mathbf{E}}[z]}{\hbar} \right) \right\}.$$





$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0) = z_{\text{FV}}}^{z(T) = z_{\text{FV}}} \mathcal{D}_{\text{E}}[z] \exp \left( -\frac{S_{\text{E}}[z]}{\hbar} \right) \right\}.$$

For convenience, one chooses  $z_i = z_f = z_{FV}$  [4,5].



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_{\text{FV}}}^{z(T)=z_{\text{FV}}} \mathcal{D}_{\text{E}}[z] \exp \left(-\frac{S_{\text{E}}[z]}{\hbar}\right) \right\}.$$

For convenience, one chooses  $z_{\rm i}=z_{\rm f}=z_{\rm FV}$  [4,5].



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_{\text{FV}}}^{z(T)=z_{\text{FV}}} \mathcal{D}_{\text{E}}[z] \exp \left(-\frac{S_{\text{E}}[z]}{\hbar}\right) \right\}.$$

For convenience, one chooses  $z_{\rm i}=z_{\rm f}=z_{\rm FV}$  [4,5]. One finds two important critical trajectories:



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_{\text{FV}}}^{z(T)=z_{\text{FV}}} \mathcal{D}_{\text{E}}[z] \exp \left(-\frac{S_{\text{E}}[z]}{\hbar}\right) \right\}.$$

For convenience, one chooses  $z_{\rm i}=z_{\rm f}=z_{\rm FV}$  [4,5]. One finds two important critical trajectories: **FV trajectory** 



$$E_0 = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \log \int_{z(0)=z_{\text{FV}}}^{z(T)=z_{\text{FV}}} \mathcal{D}_{\text{E}}[z] \exp \left(-\frac{S_{\text{E}}[z]}{\hbar}\right) \right\}.$$

For convenience, one chooses  $z_{\rm i}=z_{\rm f}=z_{\rm FV}$  [4,5]. One finds two important critical trajectories: **FV trajectory** & "bounce".









 $i\mathcal{C}([0,T])$ 





































[5] Andreassen, et al. (2017), *PRD* 95(8) [6] Peres (1980), *Annals Phys.* 129(1)





### Upshot 1

Only in a special temporal regime does the loss of probability follow a simple **exponential decay law**, amenable to analytical studies [5,6].



[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





### Upshot 1

Only in a special temporal regime does the loss of probability follow a simple **exponential decay law**, amenable to analytical studies [5,6].

### Upshot 2

Due to **uniformity** during these intermediate times, we can transform the **time-dependent** problem into a **time-independent** one [1,7].



### Introduction to resonant states

[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





Key features during the exponential regime:

### Upshot 2

Due to **uniformity** during these intermediate times, we can transform the **time-dependent** problem into a **time-independent** one [1,7].





[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





Key features during the exponential regime:

Quasi-stationary wave function inside the FV region

### Upshot 2

Due to **uniformity** during these intermediate times, we can transform the **time-dependent** problem into a **time-independent** one [1,7].





[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1)

[7] Siegert (1939), Phys. Rev. 56(8)







Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant. outward-directed flux

### Upshot 2

Due to uniformity during these intermediate times, we can transform the time-dependent problem into a time-independent one [1,7].



 $V_{\rm TV}$ 

[5] Andreassen, et al. (2017), *PRD 95*(8) [1] G

[1] Gamow (1928), Z. Physik 51 (3) [7] Siegert (1939), Phys. Rev. 56 (8)

[6] Peres (1980), Annals Phys. 129(1) [7] Siegert





Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant, outward-directed flux
- equilibrated steady-state situation, sustained for a long period of time

#### Upshot 2

Due to **uniformity** during these intermediate times, we can transform the **time-dependent** problem into a **time-independent** one [1,7].







Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant. outward-directed flux
- equilibrated **steady-state** situation, sustained for a long period of time

Solve the time-independent Schrödinger equation  $\widehat{H}\Psi = E\Psi$ 



[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant, outward-directed flux
- equilibrated steady-state situation, sustained for a long period of time

Solve the **time-independent** Schrödinger equation  $\widehat{H}\Psi=E\Psi$  demanding **outgoing** Gamow–Siegert boundary conditions:





[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant, outward-directed flux
- equilibrated **steady-state** situation, sustained for a long period of time

Solve the **time-independent** Schrödinger equation  $\widehat{H}\Psi=E\Psi$  demanding **outgoing** Gamow–Siegert boundary conditions:

$$\operatorname{Im}(E) = -\frac{\hbar}{2} \left\{ \int_{FV} \left| \Psi(z) \right|^2 dz \right\}^{-1} J_{\text{outward}}$$

[5] Andreassen, et al. (2017), PRD 95(8) [1] Gamow (1928), Z. Physik 51(3) [6] Peres (1980), Annals Phys. 129(1) [7] Siegert (1939), Phys. Rev. 56(8)





Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant, outward-directed flux
- equilibrated **steady-state** situation, sustained for a long period of time

Solve the **time-independent** Schrödinger equation  $\widehat{H}\Psi={\it E}\Psi$  demanding **outgoing** Gamow–Siegert boundary conditions:

$$\Gamma = -\frac{2}{\hbar} \operatorname{Im}(\mathbf{E}).$$

- [5] Andreassen, et al. (2017), PRD 95(8)
- [1] Gamow (1928), Z. Physik 51(3) [7] Siegert (1939), Phys. Rev. 56(8)
- [6] Peres (1980), Annals Phys. 129(1)



 $P_{\text{FV}}(t) = \int_{\text{FV}} |\Psi(z,t)|^2 dz$ decay rate initial exponential back-reaction sloshing decay phase effects take over phase  $P_{
m FV}(t)\!pprox\!P_0e^{-\Gamma t}$ 0.9

Key features during the exponential regime:

- Quasi-stationary wave function inside the FV region
- Constant. outward-directed flux
- equilibrated **steady-state** situation, sustained for a long period of time

Solve the time-independent Schrödinger equation  $H\Psi = \mathbf{E}\Psi$  demanding **outgoing** Gamow-Siegert boundary conditions:

$$\Gamma = -\frac{2}{\hbar}\operatorname{Im}(\mathbf{E})$$
.

How are radiating Gamow-Siegert boundary conditions encoded precisely?



How are radiating Gamow-Siegert boundary conditions encoded precisely?

$$\longrightarrow$$
 illustrate with the example  $V^{(\varphi)}(z) = 6e^{i\varphi}z^4 + z^3 + 3z^2$ 

How are radiating **Gamow–Siegert boundary conditions** encoded precisely?

$$\longrightarrow$$
 illustrate with the example  $V^{(\varphi)}(z)=6e^{i\varphi}z^4+z^3+3z^2$ 



How are radiating Gamow-Siegert boundary conditions encoded precisely?

$$\longrightarrow$$
 illustrate with the example  $V^{(\varphi)}(z)=6e^{i\varphi}z^4+z^3+3z^2$ 







How are radiating Gamow-Siegert boundary conditions encoded precisely?

 $\longrightarrow$  illustrate with the example  $V^{(\varphi)}(z)=6e^{i\varphi}z^4+z^3+3z^2$ 



deforming  $\varphi$  from 0 to  $-\pi$ 



How are radiating Gamow-Siegert boundary conditions encoded precisely?





How are radiating **Gamow–Siegert boundary conditions** encoded precisely?

 $\longrightarrow$  illustrate with the example  $V^{(\varphi)}(z)=6e^{i\varphi}z^4+z^3+3z^2$ 



deforming  $\varphi$  from 0 to  $-\pi$ 









How are radiating **Gamow–Siegert boundary conditions** encoded precisely?



How are radiating Gamow-Siegert boundary conditions encoded precisely?





How are radiating Gamow-Siegert boundary conditions encoded precisely?



**2444444** 

How are radiating Gamow-Siegert boundary conditions encoded precisely?





How are radiating Gamow-Siegert boundary conditions encoded precisely?

























Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z), \qquad \Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}$$





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z), \qquad \Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$

Restrict the view to a single-dimensional complex **contour**  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

$$0 = \left\{ \underbrace{-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z)}_{\text{original Hamiltonian }\widehat{H}} - E_\ell \right\} \Psi_\ell(z)$$

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$



Let us investigate the **generic eigenvalue problem** 

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

$$0 = \left\{ \underbrace{-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z)}_{\text{original Hamiltonian } \widehat{H}} + V[z] \right\} \Psi_{\ell}(z)$$

$$= \left\{ -\frac{\hbar^2}{2m} \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \left[ \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \right] + V[\gamma(s)] - E_{\ell} \right\} \Psi_{\ell}[\gamma(s)]$$

transformed Hamiltonian  $\widehat{H}_{\gamma}$ 

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$





# Associated eigenvalue problem on $\ensuremath{\mathbb{R}}$

Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

$$0 = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) - E_\ell \right\} \Psi_\ell(z)$$
 original Hamiltonian  $\widehat{H}$ 

$$= \left\{ -\frac{\hbar^2}{2m} \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \left[ \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \right] + V[\gamma(s)] - E_{\ell} \right\} \Psi_{\ell} [\gamma(s)]$$

transformed Hamiltonian  $\widehat{H}_{\gamma}$ 

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

$$\begin{split} 0 &= \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) - E_\ell \right\} \Psi_\ell(z) \\ & \text{original Hamiltonian } \widehat{H} \\ &= \left\{ -\frac{\hbar^2}{2m} \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \left[ \frac{1}{\gamma'(s)} \frac{\mathrm{d}}{\mathrm{d}s} \right] + V[\gamma(s)] - E_\ell \right\} \psi_\ell(s) \\ & \text{transformed Hamiltonian } \widehat{H}_\gamma \end{split}$$

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$





Let us investigate the **generic eigenvalue problem** 

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

$$0 = \left\{ \underbrace{-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z)}_{\text{original Hamiltonian }\widehat{H}} - E_\ell \right\} \Psi_\ell(z)$$

$$= \left\{ \underbrace{-\frac{\hbar^2}{2m}\frac{1}{\gamma'(s)}\frac{\mathrm{d}}{\mathrm{d}s} \left[\frac{1}{\gamma'(s)}\frac{\mathrm{d}}{\mathrm{d}s}\right] + V[\gamma(s)]}_{\text{transformed Hamiltonian }\widehat{H}_{\gamma}} - E_{\ell} \right\} \psi_{\ell}(s)$$

$$\longrightarrow \widehat{H}_{\gamma}\psi_{\ell}(s) = E_{\ell}\psi_{\ell}(s)$$
 takes a suggestive form





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$







Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional complex contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

$$\widehat{H}_{\gamma}\psi_{\ell}(s)=E_{\ell}\psi_{\ell}(s)$$
 is defined on  $\mathbb{R}$ 



 $\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$ 





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional complex contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s\in\mathbb{R}.$ 

- $\widehat{H}_{\gamma}\psi_{\ell}(s)=E_{\ell}\psi_{\ell}(s)$  is defined on  $\mathbb{R}$
- ${\ }{\ }$  The  ${\bf normalizable}$  eigenfunctions  $\psi_\ell(s)$  decay at s-spatial infinity

 $\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$ 

 $\longrightarrow \widehat{H}_{\gamma}\psi_{\ell}(s) = E_{\ell}\psi_{\ell}(s)$  takes a suggestive form



Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z) ,$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

- $\widehat{H}_{\gamma}\psi_{\ell}(s)=E_{\ell}\psi_{\ell}(s)$  is defined on  $\mathbb{R}$
- ${\ }{\ }$  The  ${\bf normalizable}$  eigenfunctions  $\psi_\ell(s)$  decay at s-spatial infinity
- $\circ$  Caveat:  $\hat{H}_{\gamma}$  is non-Hermitian

$$\longrightarrow \widehat{H}_{\gamma}\psi_{\ell}(s) = E_{\ell}\psi_{\ell}(s)$$
 takes a suggestive form





Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

- $\widehat{H}_{\gamma}\psi_{\ell}(s)=E_{\ell}\psi_{\ell}(s)$  is defined on  $\mathbb{R}$
- $\bigcirc$  The **normalizable** eigenfunctions  $\psi_\ell(s)$  decay at s-spatial infinity
- igcirc Caveat:  $\widehat{H}_{\gamma}$  is **non-Hermitian**  $\longrightarrow$  standard QM tools require slight modification

$$\longrightarrow \widehat{H}_{\gamma}\psi_{\ell}(s) = E_{\ell}\psi_{\ell}(s)$$
 takes a suggestive form

 $\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$ 



# Associated eigenvalue problem on $\mathbb{R}$ : "Propagator"

Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

What is the transition amplitude of a point particle propagating from  $\gamma(s_{\rm i})$  to  $\gamma(s_{\rm f})$ 

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$



# Associated eigenvalue problem on ℝ: "Propagator"

Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

What is the **transition amplitude** of a point particle **propagating** from  $\gamma(s_i)$  to  $\gamma(s_f)$  in case the motion is fully **constrained** to  $\Gamma$ ?

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$



# Associated eigenvalue problem on $\mathbb{R}$ : "Propagator"

Let us investigate the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z),$$

Restrict the view to a single-dimensional **complex** contour  $\Gamma$  parameterized by  $\gamma(s)$  with  $s \in \mathbb{R}$ .

What is the **transition amplitude** of a point particle **propagating** from  $\gamma(s_{\rm i})$  to  $\gamma(s_{\rm f})$  in case the motion is fully **constrained** to  $\Gamma$ ?

$$K_{\mathrm{E}}^{(\gamma)}(s_{\mathrm{i}}, s_{\mathrm{f}}; T) \coloneqq \left\langle s_{\mathrm{f}} \left| \exp \left( -\frac{\widehat{H}_{\gamma}T}{\hbar} \right) \right| s_{\mathrm{i}} \right\rangle$$

$$\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0 \text{ for } z \in S_{\pm}.$$





# Accessing the spectrum with a functional integral

#### Given the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z)$$

with  $\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0$  for  $z \in S_{\pm}$ ,



# Accessing the spectrum with a functional integral

Given the generic eigenvalue problem

$$\widehat{H}\Psi_{\ell}(z) = \left\{ -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}z^2} + V(z) \right\} \Psi_{\ell}(z) = E_{\ell} \Psi_{\ell}(z)$$

with  $\Psi_{\ell}(\eta z) \xrightarrow{\eta \to \infty} 0$  for  $z \in S_{\pm}$ , one finds the relation:



#### Master formula

$$\int_{\mathcal{C}([0,T],\Gamma)}^{z(0)=z_{\mathrm{i}}} \mathcal{D}_{\mathrm{E}}[z] \, \exp\left(-\frac{S_{\mathrm{E}}[z]}{\hbar}\right) = \sum_{\ell=0}^{\infty} \, \exp\left(-\frac{E_{\ell}T}{\hbar}\right) \Psi_{\ell}(z_{\mathrm{i}}) \, \Psi_{\ell}(z_{\mathrm{f}}) \, \left\{ \int_{\Gamma} \Psi_{\ell}(z)^2 \, \mathrm{d}z \right\}^{-1}.$$













$$E_0^{\text{(global)}} = -\hbar \lim_{T \to \infty} \left( \frac{1}{T} \log \int_{\mathcal{C}([0,T])}^{z(0)=z_{\text{i}}} \mathcal{D}_{\text{E}}[z] \exp \left\{ -\frac{1}{\hbar} \int_0^T \left[ \frac{m}{2} \dot{z}(t)^2 + \frac{\mathbf{V}^{\text{(stable)}}(z(t))}{(z(t))} \right] dt \right\} \right)$$







$$E_0^{\text{(resonant)}} = -\hbar \lim_{T \to \infty} \left( \frac{1}{T} \log \int_{\mathcal{C}([0,T],\Gamma)}^{z(0)=z_i} \mathcal{D}_{\mathrm{E}}[z] \exp \left\{ -\frac{1}{\hbar} \int_0^T \left[ \frac{m}{2} \dot{z}(t)^2 + V^{\text{(unstable)}}(z(t)) \right] \mathrm{d}t \right\} \right)$$

Munu Dils Wigner

9





$$E_0^{\text{(resonant)}} = -\hbar \lim_{T \to \infty} \left( \frac{1}{T} \log \int_{\mathcal{C}([0,T],\Gamma)}^{z(0)=z_i} \mathcal{D}_{\mathrm{E}}[z] \exp \left\{ -\frac{1}{\hbar} \int_0^T \left[ \frac{m}{2} \dot{z}(t)^2 + V^{\text{(unstable)}}(z(t)) \right] dt \right\}$$

Tils Wigger,

9



Thanks for your attention!

