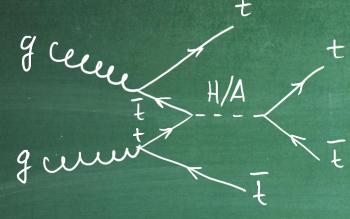
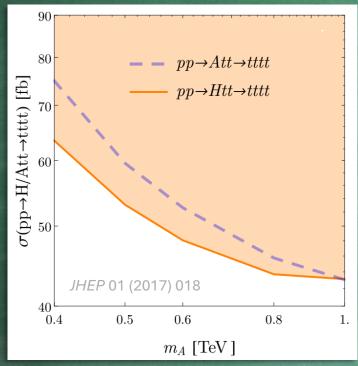
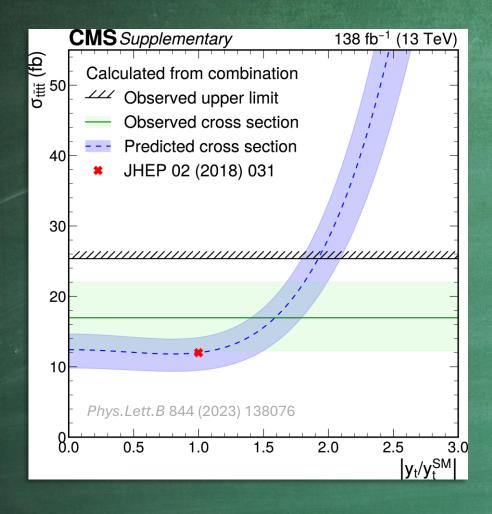

Invariant-Mass
Threshold Resummation
for Four Top-Quark
Production at the LHC

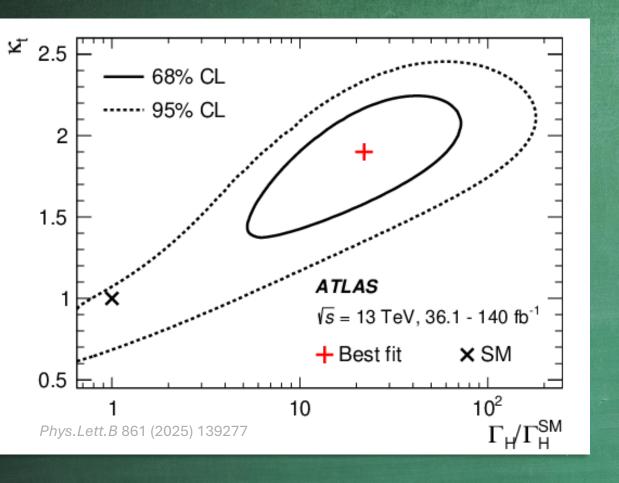
Based on: 2505.10381 (submitted to JHEP)


Michele Lupattelli


in collaboration with

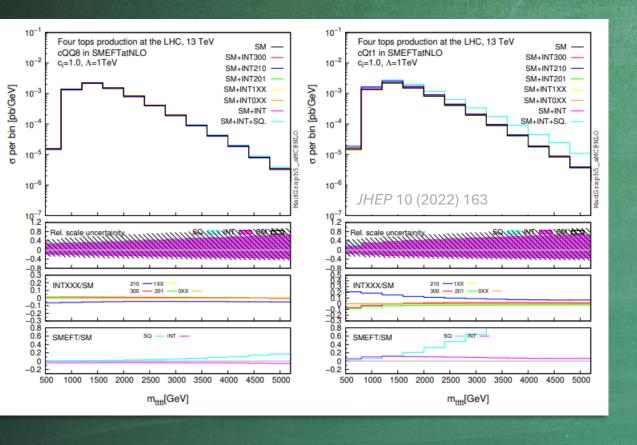
M. van Beekveld, A. Kulesza, T. Saracco


AND THE PARTY OF T



 $t\bar{t}t\bar{t}$ is a very rare process:

• can hide new physics BSM



- can hide new physics BSM
- sensitive to top-Yukawa coupling

- can hide new physics BSM
- sensitive to top-Yukawa coupling
- constrain width of Higgs boson

ALL CONTRACTOR

- can hide new physics BSM
- sensitive to top-Yukawa coupling
- constrains width of Higgs boson
- constrains operators in EFT

Eur. Phys. J. C (2023) 83:496 https://doi.org/10.1140/epjc/s10052-023-11573-0 THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Observation of four-top-quark production in the multilepton final state with the ATLAS detector

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 29 March 2023 / Accepted: 2 May 2023 / Published online: 12 June 2023 © CERN for the benefit of the ATLAS collaboration 2023

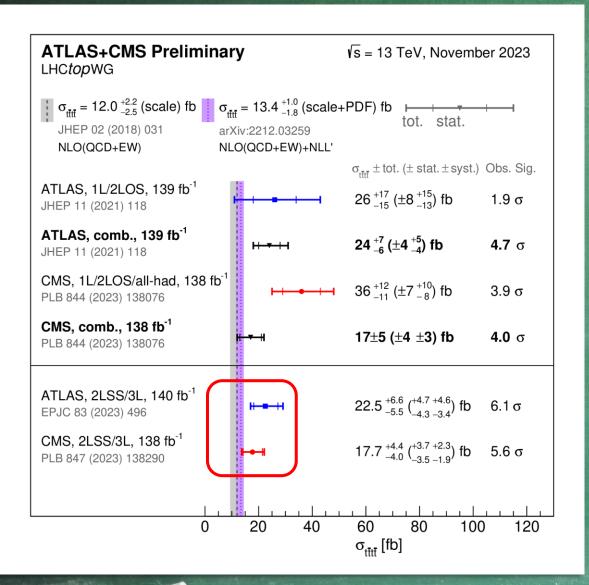
Phys. Lett. B 847 (2023) 138290

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

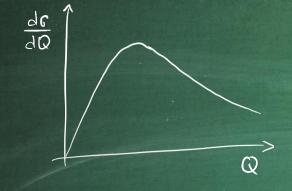

Observation of four top quark production in proton-proton collisions at $\sqrt{s} = 13 \,\text{TeV}$

The CMS Collaboration *

CERN, Geneva, Switzerland

- can hide new physics BSM
- sensitive to top-Yukawa coupling
- constrain width of Higgs boson
- constrain operators in EFT

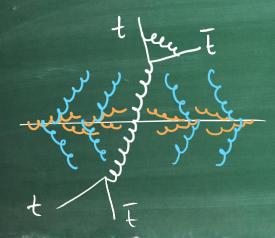
Consistent with Standard Model predictions:


- ATLAS: 1.8, 1.7 standard deviations;
- CMS: 1.3, 1.1 standard deviations.

HL-LHC → reduction of experimental uncertainties.

Accuracy of theoretical predictions must improve as well!

State-of-the-art $t\bar{t}t\bar{t}$ theory


- First calculations of NLO QCD corrections in [Bevilacqua, Worek '12]
- Matched with parton shower and studied in aMC@NLO [Alwall et al. '14] [Maltoni, Pagani, Tsinikos '15]
- Full set of EW corrections added in [Frederix, Pagani, Zaro '17]
- Spin correlations in LO top quark decays within the framework of Powheg Box [Jezo, Krauss '21]
- Effect of soft-gluon corrections at NLO+NLL' in the absolute-mass threshold formalism studied for the first time in [van Beekveld, Kulesza, Moreno Valero '22]
- Spin correlations in NLO top quark decays using NWA [Stremmer, Worek '24]
- Effect of soft-gluon corrections at NLO+NLL' in the invariant-mass threshold formalism [presented today]

• Observable: invariant mass $d\sigma/dQ$

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$
- Threshold limit: $\hat{\rho} \rightarrow 1$
 - Enhancement of the cross section

- hard process - soft emissions collinear emissions

- hand process
- soft emissions
- collinear emissions

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$
- Threshold limit: $\hat{\rho} \rightarrow 1$
 - Enhancement of the cross section
 - Factorization in Mellin space

- JET FUNCTIONS

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$
- Threshold limit: $\hat{\rho} \rightarrow 1$
 - Enhancement of the cross section
 - Factorization in Mellin space

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$
- Threshold limit: $\hat{\rho} \rightarrow 1$
 - Enhancement of the cross section
 - Factorization in Mellin space
- RGEs \Rightarrow inclusion of all orders

- Observable: invariant mass $d\sigma/dQ$
- Threshold variable: $\hat{\rho} = Q^2/s$
- Threshold limit: $\hat{\rho} \rightarrow 1$
 - Enhancement of the cross section
 - Factorization in Mellin space
- RGEs \Rightarrow inclusion of all orders
- Transform back to momentum space

$$\frac{dG_{ij}^{rus}(N)}{dQ} = Tr\{S_{ij}^{r}(N+\Lambda)H_{ij}\} \Delta_{i}(N+\Lambda)\Delta_{j}(N+\Lambda)$$

$$+ \frac{d}{dQ}G_{ij}^{r}(N) = 0$$

$$- hard FUNCTION$$

$$+ Soft FUNCTION$$

$$+ JET FUNCTIONS$$

$$H_{ij} = \prod_{k=0}^{\infty} \left(\frac{\alpha_{s}}{k\pi}\right)^{k} H_{ij}$$

$$S_{ij} = \bigcup_{ij} S_{ij} \bigcup_{ij} , S_{ij} = \sum_{k=0}^{\infty} \left(\frac{\kappa_{s}}{k\pi}\right)^{k} S_{ij}^{(k)}$$

$$U_{ij} = P \exp\left[\frac{1}{2} \int_{\mu_{k}}^{Q^{2}/\bar{N}^{2}} d\mu^{2} \prod_{ij} \left[\mu^{2}, v_{s}[\mu^{2})\right]\right]$$

$$\Delta_{i} = \exp\left[\sum_{k=1}^{\infty} \chi_{s}^{k-2} g_{k}(\lambda)\right] , \lambda = \chi_{s} b_{o} \log N$$

$$\frac{dG_{ij}^{RS}(N)}{dQ} = Tr\left\{S_{ij}(N+\Lambda)H_{ij}\right\} \Delta_{i}(N+\Lambda)\Delta_{j}(N+\Lambda)$$

t fere to

$$\mu \frac{d}{d\mu} \tilde{G}_{ij}(N) = 0$$

- hand FUNCTION
- soft FUNCTION
- JET FUNCTIONS

$$H_{ij} = \prod_{k=0}^{\infty} \left(\frac{\alpha_{s}}{h_{11}}\right)^{k} H_{ij}$$

$$S_{ij} = U_{ij} S_{ij} U_{ij}, S_{ij} + \sum_{k=0}^{\infty} \left(\frac{\kappa_{s}}{h_{11}}\right)^{k} S_{ij}^{(k)}$$

$$U_{ij} = P \text{avp} \left[\frac{1}{2} \int_{\mu_{k}^{2}}^{Q^{2}/\bar{h}^{2}} d\mu^{2} \left(\Gamma_{ij}\right) \mu^{2}, v_{s}[\mu^{2}]\right]$$

$$\Delta_{i} = \exp \left[\sum_{k=1}^{\infty} v_{k}^{k-2} \left(g_{k}(A)\right), A = v_{s} b_{o} \log N\right]$$

$$\frac{dG_{ij}^{Rus}(N)}{dQ} = Tr\left\{\overline{S_{ij}}(N+\Lambda)H_{ij}\right\} \Delta_{i}(N+\Lambda)\Delta_{j}(N+\Lambda)$$

$$\mu \frac{d}{d\mu} G_{ij}(N) = 0$$

- hand FUNCTION
- soft FUNCTION
- JET FUNCTIONS

$$\mathbf{H} = \mathbf{H}^{(0)} + \frac{\alpha_s}{4\pi} \mathbf{H}^{(1)}$$

$$\tilde{\mathbf{S}} = \tilde{\mathbf{S}}^{(0)} + \frac{\alpha_s}{4\pi} \tilde{\mathbf{S}}^{(1)}$$

$$\mathbf{\Gamma} = \frac{\alpha_s}{4\pi} \mathbf{\Gamma}^{(1)}$$

$$\Delta_i = \exp\left\{g_1 \log N + g_2\right\}$$

Matching to NLO: NLO+NLL'

$$d\sigma^{\text{f.o.+res}} = d\sigma^{\text{f.o.}} + \left[d\sigma^{\text{res}} - d\sigma^{\text{res}}|_{\mathcal{O}(\alpha_s^n)} \right]$$

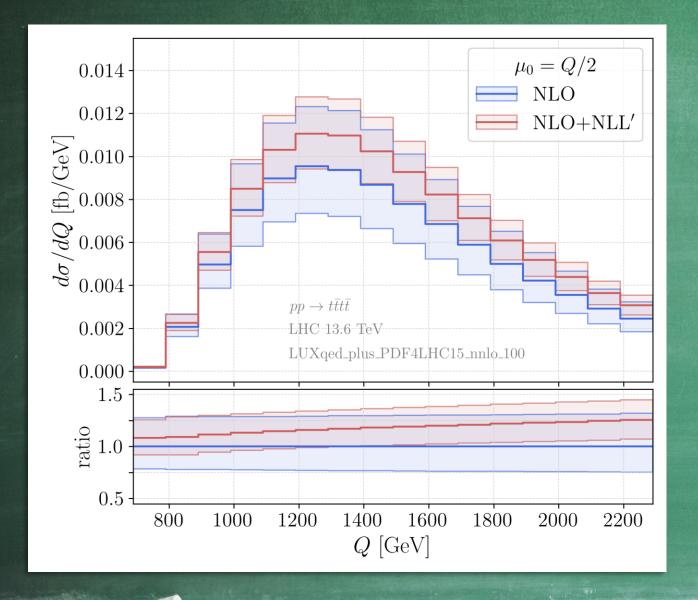
NLO obtained with MG5_aMC@NLO. (JHEP 07 (2014) 079 - JHEP 07 (2018) 185) It includes also EW corrections.

$$\frac{dG_{ij}^{rus}(N)}{dQ} = Tr\{S_{ij}(N+\Lambda)H_{ij}\} \Delta_i(N+\Lambda)\Delta_j(N+\Lambda)$$

$$\frac{d}{dQ} G_{ij}(N) = 0$$

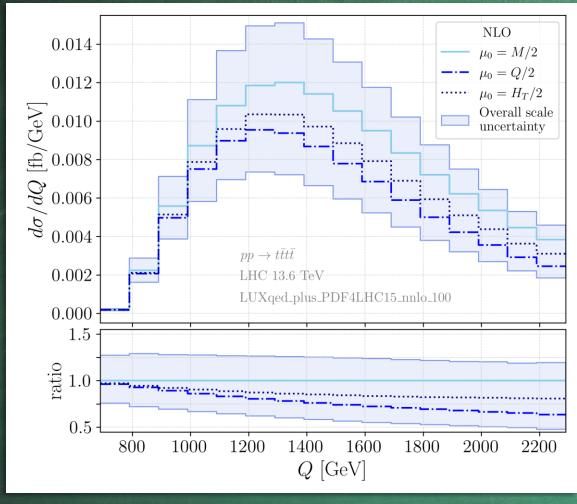
$$-hand FUNCTION$$

$$+ Soft FUNCTIONS$$

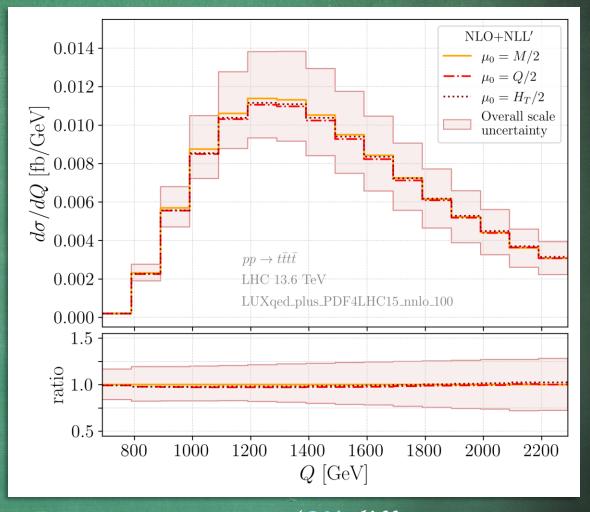

$$\mathbf{H} = \mathbf{H}^{(0)} + \frac{\alpha_s}{4\pi} \mathbf{H}^{(1)}$$

$$\tilde{\mathbf{S}} = \tilde{\mathbf{S}}^{(0)} + \frac{\alpha_s}{4\pi} \tilde{\mathbf{S}}^{(1)}$$

$$\mathbf{\Gamma} = \frac{\alpha_s}{4\pi} \mathbf{\Gamma}^{(1)}$$

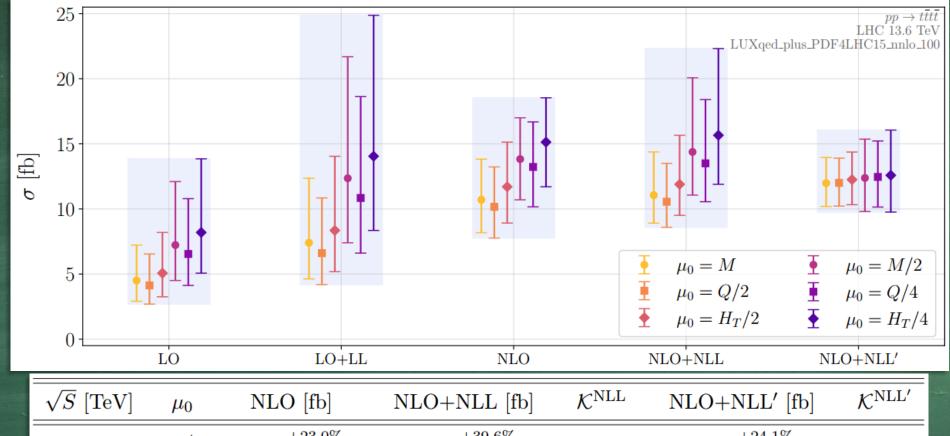

$$\Delta_i = \exp\left\{g_1 \log N + g_2\right\}$$

Results – Invariant-Mass distribution



- Change in shape substantial
- NLL' corrections vary in range [8%,25%]
- NLL' corrections increasingly positive with *Q*
- Scale uncertainty substantially reduced

Results – Invariant-Mass distribution

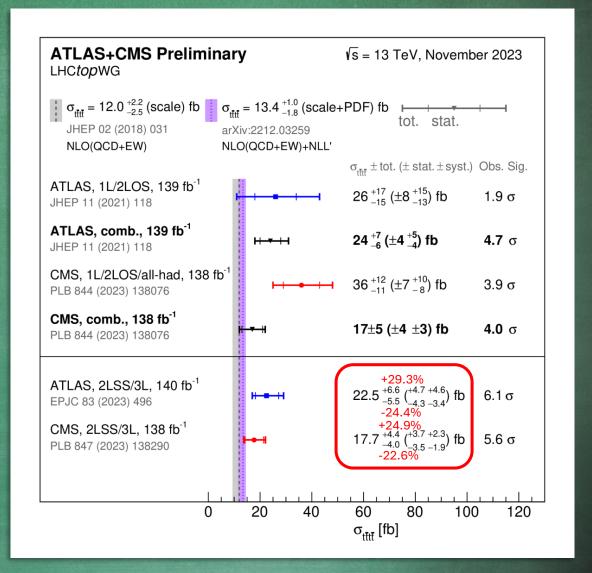


- Better convergence (3% differences at most)
- Lower overall scale uncertainty

Results – Integrated cross section

\sqrt{S} [TeV]	μ_0	NLO [fb]	NLO+NLL [fb]	$\mathcal{K}^{ ext{NLL}}$	NLO+NLL' [fb]	$\mathcal{K}^{ ext{NLL'}}$
13.6	M/2	$13.83^{+23.0\%}_{-22.6\%}$	$14.38^{+39.6\%}_{-23.1\%}$	1.04	$12.38^{+24.1\%}_{-20.8\%}$	0.90
	Q/2	$10.16^{+30.1\%}_{-23.6\%}$	$10.55^{+27.9\%}_{-18.6\%}$	1.04	$12.00^{+15.8\%}_{-14.9\%}$	1.18
	$H_T/2$	$11.70^{+29.3\%}_{-23.8\%}$	$11.89^{+31.7\%}_{-20.1\%}$	1.02	$12.25^{+17.3\%}_{-15.7\%}$	1.05

Results – Comparing with experimental data


\sqrt{S} [TeV]	μ_0	NLO+NLL' [fb]
13	M/2	$10.43^{+23.6\%}_{-20.8\%}$
	Q/2	$10.16^{+15.7\%}_{-14.8\%}$
	$H_T/2$	$10.35^{+17.1\%}_{-15.7\%}$

$$\mu_0 = Q/2$$
:

- 1.8σ from CMS
- 2.2σ from ATLAS

$$\mu_0 = M/2$$
:

- 1.5σ from CMS
- 2.0σ from ATLAS

Conclusions

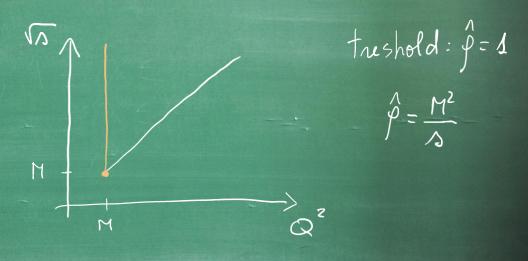
- I presented the most accurate QCD predictions for $t\bar{t}t\bar{t}$ to date. The NLO results have been combined with NLL' (NLO+NLL'), and thus include all-order corrections in the soft gluon emission limit.
- The NLL' corrections reduce the theoretical uncertainty and improve the convergence of the predictions.
- For the first time, soft-gluon corrections to the invariant mass distribution Q of the $t\bar{t}t\bar{t}$ system have been obtained.

Conclusions

- I presented the most accurate QCD predictions for $t\bar{t}t\bar{t}$ to date. The NLO results have been combined with NLL' (NLO+NLL'), and thus include all-order corrections in the soft gluon emission limit.
- The NLL' corrections reduce the theoretical uncertainty and improve the convergence of the predictions.
- For the first time, soft-gluon corrections to the invariant mass distribution Q of the $t\bar{t}t\bar{t}$ system have been obtained.

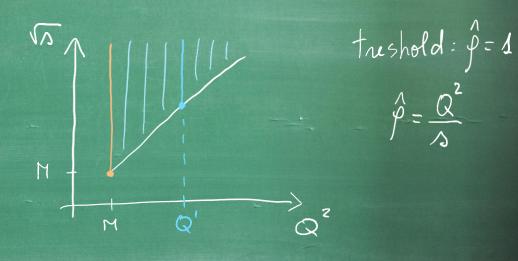
Outlook

- The new theoretical predictions are in agreement with the experimental results. However, both the theoretical uncertainty and the experimental error are still quite large. With HL-LHC, further effort from theory side is needed.
- Next step: performing the calculation at NLO+NNLL accuracy.


Thank you!

Balles Sades

$\sqrt{S} =$	$13.6~{\rm TeV}$	_	$\mu_0 = M/2$	_	Cross sect	ions in [fb]
$\mathcal{K}_{ ext{IMT-res}}$	NLO+NLL'	test IMT-res	$\mathcal{K}_{ ext{IMT-res}}^{ ext{test}}$	NLO+NL	${\rm L'_{AMT\text{-}res}}$	$\mathcal{K}_{ ext{AMT-res}}$
0.90	17.91_{-20}^{+13}	3.8%).8%	1.30	17.36_	-8.3% -17.5%	1.26
1	$\mathcal{C}_{ ext{IMT-res}}$	$\mathcal{C}_{ ext{IMT-res}}$ NLO+NLL'	C _{IMT-res} NLO+NLL' test	$\mathcal{C}_{ ext{IMT-res}}$ NLO+NLL $'^{ ext{test}}_{ ext{IMT-res}}$ $\mathcal{K}^{ ext{test}}_{ ext{IMT-res}}$	$\mathcal{C}_{ ext{IMT-res}}$ NLO+NLL $'^{ ext{test}}_{ ext{IMT-res}}$ $\mathcal{K}^{ ext{test}}_{ ext{IMT-res}}$ NLO+NL	$\mathcal{C}_{\mathrm{IMT-res}}$ NLO+NLL' $_{\mathrm{IMT-res}}^{\mathrm{test}}$ $\mathcal{K}_{\mathrm{IMT-res}}^{\mathrm{test}}$ NLO+NLL' $_{\mathrm{AMT-res}}$


NLO	$\sqrt{S} =$	$13.6~{ m TeV}$ –	$\mu_0 = M/2$	2 – Cross sec	tions in [fb]
$13.83^{+23.0\%}_{-22.6\%}$					
$NLO+NLL'_{IMT-res}$	$\mathcal{K}_{ ext{IMT-res}}$	$NLO+NLL'_{IMT-res}^{test}$	$\mathcal{K}_{ ext{IMT-res}}^{ ext{test}}$	$NLO+NLL'_{AMT-res}$	$\mathcal{K}_{ ext{AMT-res}}$
$12.38^{+24.1\%}_{-20.8\%}$	0.90	$17.91^{+13.8\%}_{-20.8\%}$	1.30	$17.36^{+8.3\%}_{-17.5\%}$	1.26

• AMT-res: soft-gluon corrections originating from phase-space region close to the four-top production threshold $M=4m_t$

NLO	$\sqrt{S} =$	$13.6~{ m TeV}$	_	$\mu_0 = M/2$	_	Cross sect	ions in [fb]
$13.83^{+23.0\%}_{-22.6\%}$							
NLO+NLL' _{IMT-res}	$\mathcal{K}_{ ext{IMT-res}}$	NLO+NLL't	est MT-res	$\mathcal{K}^{ ext{test}}_{ ext{IMT-res}}$	NLO+NLI	Z'AMT-res	$\mathcal{K}_{ ext{AMT-res}}$
$\phantom{00000000000000000000000000000000000$	0.90	$17.91^{+13.}_{-20.}$	8% 8%	1.30	17.36_	8.3% 17.5%	1.26

- AMT-res: soft-gluon corrections originating from phase-space region close to the fourtop production threshold $M=4m_t$
- IMT-res: soft-gluon corrections originating from phase-space region close to the four-top invariant mass *Q*

NLO	$\sqrt{S} =$	13.6 TeV	_	$\mu_0 = M/2$. –	Cross sect	tions in [fb]
$13.83^{+23.0\%}_{-22.6\%}$					1		
NLO+NLL' _{IMT-res}	$\mathcal{K}_{\mathrm{IMT\text{-}res}}$	NLO+NLL	test IMT-res	$\mathcal{K}^{ ext{test}}_{ ext{IMT-res}}$	NLO+NL	${\rm L'_{AMT\text{-}res}}$	$\mathcal{K}_{ ext{AMT-res}}$
$\underline{12.38^{+24.1\%}_{-20.8\%}}$	0.90	17.91^{+1}_{-2}	$3.8\% \\ 0.8\%$	1.30	17.36	$+8.3\% \\ -17.5\%$	1.26

- AMT-res: soft-gluon corrections originating from phase-space region close to the four-top production threshold $M=4m_t$
- IMT-res: soft-gluon corrections originating from phase-space region close to the four-top invariant mass *Q*

$$g_{2}(\lambda) = \frac{A^{(1)} b_{1}}{2 \pi b_{0}^{3}} \left[2\lambda + lop(1-2\lambda) + \frac{1}{2} lop^{2}(1-2\lambda) \right] \\ - \frac{A^{(2)}}{2 \pi^{2} b_{0}^{2}} \left[2\lambda + lop(1-2\lambda) \right] \\ + \frac{A^{(1)}}{2 \pi b_{0}} \left[lop(1-2\lambda) lop(\frac{M^{2}}{MR}) + 2\lambda lop(\frac{M^{2}}{MR}) \right]$$

NLO
$$\sqrt{S} = 13.6 \text{ TeV}$$
 - $\mu_0 = M/2$ - Cross sections in [fb] $13.83^{+23.0\%}_{-22.6\%}$

NLO+NLL'_{IMT-res} $\mathcal{K}_{IMT-res}$ NLO+NLL'_{IMT-res} $\mathcal{K}_{IMT-res}^{test}$ NLO+NLL'_{AMT-res} $\mathcal{K}_{AMT-res}$ $12.38^{+24.1\%}_{-20.8\%}$ 0.90 $17.91^{+13.8\%}_{-20.8\%}$ 1.30 $17.36^{+8.3\%}_{-17.5\%}$ 1.26

- AMT-res: soft-gluon corrections originating from phase-space region close to the four-top production threshold $M=4m_t$
- IMT-res: soft-gluon corrections originating from phase-space region close to the four-top invariant mass *Q*

$$g_{2}(A) = \frac{A^{(n)}b_{n}}{2\pi b_{0}^{3}} \left[2\lambda + lop(1-2A) + \frac{1}{2}lop^{2}(1-2A) \right]$$

$$- \frac{A^{(2)}}{2\pi^{2}b_{0}^{2}} \left[2\lambda + lop(1-2A) \right]$$

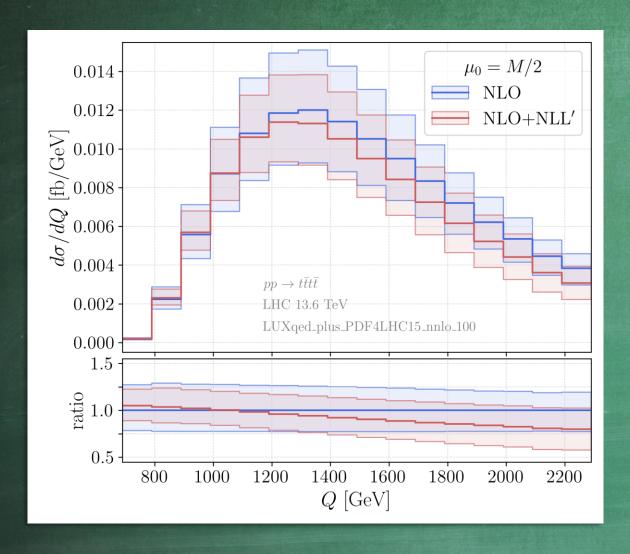
$$+ \frac{A^{(n)}}{2\pi b_{0}} \left[lop(n-2A) lop(\frac{Q^{2}}{MR}) + 2\lambda lop(\frac{M_{F}^{2}}{MR}) \right]$$

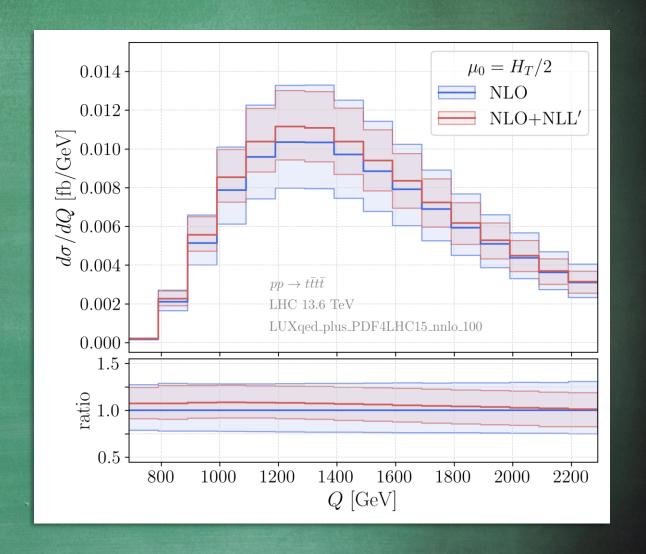
A complicated calculation

Color decomposition of the amplitude

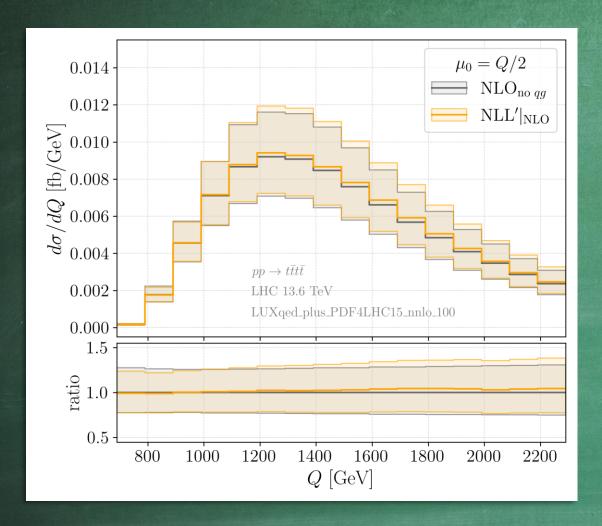
Soft radiation sensitive to overall color structure of hard process

- \Rightarrow H and S are matrices in colour space:
- $q\bar{q}$ channel: 6-dimensional colour space
- gg channel: 14-dimensional colour space


Color decomposed amplitudes extracted from custom version of OpenLoops (Eur. Phys. J. C 79 (2019) 866)


Diagonalization of soft anomalous dimension

Diagonalization necessary to get rid of path-ordering operator. Performed for every phase-space point.


$$\mathbf{U} = \mathcal{P} \exp \left[\frac{1}{2} \int_{\mu^2}^{Q^2/\bar{N}^2} \frac{\mathrm{d}\mu^2}{\mu^2} \mathbf{\Gamma} \left(\mu^2, \alpha_s(\mu^2) \right) \right]$$

Invariant-Mass distribution (additional scales)

Approximate NLO

μ_0	NLO _{QCD} [fb]	$NLO_{no\ qg}$ [fb]	NLL' _{NLO} [fb]
M/2	$13.13^{+25.2\%}_{-24.5\%}$	$13.05^{+20.2\%}_{-21.1\%}$	$13.45^{+21.6\%}_{-21.9\%}$
Q/2	$9.38^{+33.3\%}_{-25.8\%}$	$9.77^{+28.1\%}_{-23.9\%}$	$9.92^{+28.7\%}_{-24.1\%}$
$H_T/2$	$10.88^{+32.3\%}_{-25.8\%}$	$11.22^{+26.0\%}_{-23.7\%}$	$11.44^{+27.0\%}_{-24.0\%}$

- NLL' expanded reproduces $NLO_{no\ qg}$ reliably, both at the differential and integrated level.
- qg contribution to the cross section is very small.
- Differences between $NLL'|_{NLO}$ and $NLO_{no\ qg}$ do not exceed 3%.
- Differences between $NLL'|_{NLO}$ and NLO are at most 6%.