

Parton-shower and fixed-order QCD effects in weak-boson fusion and $H o b \overline{b}$ decay

Arnd Behring, Kirill Melnikov, <u>Ivan Novikov</u>, Giulia Zanderighi

based on arXiv:2507.01448

The $H \to b \bar b$ decay is difficult to measure due to large number of b-jets from QCD background

On the other hand, Higgs-boson production in weak-boson fusion (WBF) can be separated from QCD backgrounds by its distinct signature of two back-to-back jets

We look for events with two light nearly-back-to-back jets with a high invariant mass and two b-tagged jets

These event selection criteria are rather strict: only events with a sufficiently boosted Higgs boson are accepted

$$\mathrm{d}\sigma = \mathrm{Br}_{H\to b\bar{b}}\,\mathrm{d}\sigma_{\mathrm{WBF}}\frac{\mathrm{d}\Gamma_{H\to b\bar{b}}}{\Gamma_{H\to b\bar{b}}}$$

$$\bar{b} \qquad \mathrm{Br}_{H\to b\bar{b}} = \frac{\Gamma_{H\to b\bar{b}}}{\Gamma_{H\to \mathrm{anything}}}$$

$$\int\limits_{b}\mathrm{d}\sigma_{\mathrm{WBF}}\mathrm{d}\Gamma_{H\to b\bar{b}} = \int\limits_{\mathrm{inclusive}}\mathrm{d}\sigma_{\mathrm{WBF}}\times\int\limits_{\mathrm{inclusive}}\mathrm{d}\Gamma_{H\to b\bar{b}}$$

$$\int\limits_{\mathrm{fiducial}}\mathrm{d}\sigma_{\mathrm{WBF}}\mathrm{d}\Gamma_{H\to b\bar{b}} \neq \int\limits_{\mathrm{fiducial}}\mathrm{d}\sigma_{\mathrm{WBF}}\times\int\limits_{\mathrm{fiducial}}\mathrm{d}\Gamma_{H\to b\bar{b}}$$

The production and decay subprocesses are factorized in the narrow-width approximation, but the event selection criteria introduce correlations

Fixed-order corrections to weak-boson fusion

Weak-boson fusion in double-DIS approximation up to NNLO QCD

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2015)] [Cruz-Martinez, Gehrmann, Glover, Huss (2018)] [Asteriadis, Caola, Melnikov, Röntsch (2022)]

- Electroweak corrections and interference effects up to NLO EW ($\sim -5\%$) [Ciccolini, Denner, Dittmaier (2007)]
- Nonfactorizable corrections at NNLO QCD ($\sim -0.3\%$) [Liu, Melnikov, Penin (2019)] [Asteriadis, Brønnum-Hansen, Melnikov (2023)]

QCD corrections to weak-boson fusion are of order $\sim -11\%$

- $H o b\bar{b}$ with massless b quarks up to N³LO [Mondini, Schiavi, Williams (2019)]
- $H \rightarrow b\bar{b}$ with massive b quarks up to NNLO

[Behring, Bizoń (2020)] [Bernreuther, Chen, Si (2018)]

$$\Gamma_{H \to b\bar{b}}/{
m MeV} pprox 1.926 + 0.400 + 0.106 + \dots \qquad H \ {
m ($\mu = m_H$)} \qquad {
m LO} \qquad {
m \Delta NLO} \qquad {
m \Delta NNLO} \ (+21\%) \qquad (+6\%) \qquad {
m 7}$$

QCD corrections to $H \rightarrow b\bar{b}$ decay are of order ~ +27%

$$\sigma_{\text{fiducial}}/\text{fb} = 75.6$$
 -23.2 $-7.8 + \dots$
LO Δ_{NLO} Δ_{NNLO} (-31%) (-10%)

But with the used event selection criteria the corrections to the combined process $pp o H(b\bar{b})jj$ are large: -41% in comparison to LO!

These large corrections are due to the tendency of QCD radiation in the $H \to b\bar{b}$ decay to reduce the transverse momentum of the b-jet, thus lowering the probability that they pass the b-jet selection criteria

To investigate this further, in this study we combine $H \to b\bar{b}$ decay events with a parton shower and fixed-order WBF

$\sigma/{ m fb}$	fixed order	LO+PS	MiNNLO+PS
LO	75.6	46.6	45.2
NLO	52.4	43.6(1)	42.3
NNLO	44.6(1)	43.1(1)	41.4(1)

(number in parenthesis indicates Monte-Carlo uncertainty)

Parton shower in the decay subprocess resums most of the large corrections and dramatically improves stability across different orders

Even the simplest approximation, — LO+PS times an overall K-factor, — captures the shape of the b-jet distributions up to a few percent

On the other hand, fixed-order corrections to WBF are important for distributions of light WBF-tagging jets

The b-jet distributions are sensitive to the renormalization scale used in the decay subprocess, indicating perturbative uncertainty of order $\sim 5\%$

- The strict event selection criteria used for the combined process $pp \to H\left(b\bar{b}\right)jj$ introduce sensitivity to soft and collinear radiation in the decay subprocess, and lead to large fixed-order corrections (-40%).
- Using a parton shower for the decay subprocess effectively resums these large corrections and restores perturbative convergence.
- A similar interplay between event selection criteria and fixed-order and parton-shower simulations was found for double Higgs production.

 [Braun, Fontes, Heinrich (2025)]
- Electroweak and interference corrections are in principle known and are expected to further reduce the cross-section by $\sim 5\%$.
- The remaining uncertainty is of order ~ 5%, the dominant source of uncertainty is in the differential modelling of the $H \to b\bar{b}$ decay subprocess.

THANK YOU FOR THE ATTENTION!

BACKUP

The b-quark Yukawa coupling y_b can be measured in $H \to b \bar b$ decay.

With massless b quarks b-jet tagging is potentially IRC-unsafe, because a soft gluon can split into a $b\bar{b}$ pair, which end up in different jets and change their flavor. In the $H\to b\bar{b}$ calculation this soft singularity is regulated by a finite b-quark mass.

The available weak-boson-fusion calculations neglect the b-quark mass. To ensure IRC-safety, we do not tag b jets originating from WBF. As a result, we can use the standard anti- k_{\perp} jet clustering algorithm.

$$\sigma_{\text{fiducial}}/\text{fb} = 75.9 - 5.0 - 1.5 + \dots$$
LO Δ_{NLO} Δ_{NNLO} (-7%) (-2%)

With leading-order decay, the production corrections to $pp o H \Big(o b \overline{b} \Big) jj$ are relatively small [Asteriadis, Caola, Melnikov, Röntsch (2022)]

Production-scale variations in fixed-order calculation

Production-scale variations do not cover the observed large corrections

Decay-scale variations in fixed-order calculation

The impact of scale variation in the decay $H \to bb$ is comparable to that in the WBF production, and does not capture the observed large corrections either

Corrections to the total $H \to b\bar{b}$ decay width $\Gamma_{H \to b\bar{b}}$ are positive, but they are large and negative with the used event selection criteria

p_{\perp,b_2} threshold in the fixed-order calculation

With the chosen p_{\perp,b_2} threshold the decay corrections do not seem to converge. The convergence improves with more inclusive event selection, but experimentally this is not feasible.

$m_{b\overline{b}}$ distribution in the fixed-order calculation

QCD radiation in the $H \to bb$ decay reduces the invariant mass $m_{b\bar{b}}$ of the reconstructed Higgs boson. Rarely, QCD radiation from weak-boson fusion can increase this invariant mass.