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Introduction



Electroweak Phase Transition
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• SM predicts EW crossover, but we don't really know what 

happened at T ∼ vEW

[D’Onofrio-Rummukainen, 1508.07161]
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FIG. 2: The continuum limit of 〈φ†φ〉 at a few selected tem-
perature values. The statistical errors are too small to be
visible at this scale.
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FIG. 3: The continuum result of 〈φ†φ〉, compared with the
perturbative broken and symmetric phase results. The shaded
bands are estimations of unknown higher order corrections to
perturbative results. The solid continuous line is an interpo-
lation to the data.

expansion converges quickly.2 There is only a narrow
window of a few GeV around the cross-over temperature
(corresponding to y ≈ 0) where the perturbative expan-
sions do not converge.
The apparent good convergence in the symmetric

2 Figure 3 can be compared with figure 2 in ref. [26], where the
agreement between the lattice and the perturbative results is
much weaker, due to the missing continuum limit of the lattice
results.
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FIG. 4: Above: susceptibility χφ†φ shown at βG = 6, 9 and
16, together with the interpolating functions. The continuum
limit is shown with a heavy line. Below: As above, zoomed-in
to the shaded band near the cross-over region.

phase may be surprising, because in this phase the non-
abelian gauge bosons are perturbatively massless, mak-
ing the physics at soft momentum scales k ∼ g2T non-
perturbative [8]. The excellent match between the lattice
and the perturbation theory means that for the Higgs
condensate their effect remains small. This can be con-
trasted with e.g. the sphaleron rate, which is in essence
completely determined by the soft physics.
We define the pseudocritical temperature by the max-

imum location of the dimensionless susceptibility

χφ†φ = V T
〈

[(φ†φ)V − 〈(φ†φ)V 〉]2
〉

, (15)

where (φ†φ)V = 1/V
∫

dV φ†φ is the volume average of
φ†φ. This is shown in figure 4, for the largest simulation
volumes at each lattice spacing. The use of the largest
volumes is justified below. There is a well-defined peak
near the cross-over temperature, however, the location
of the peak has a clear lattice spacing dependence. Be-
cause of the narrowness of the peak, the continuum limit
extrapolation becomes delicate: at a fixed temperature,
the values of χφ†φ at different lattice spacings have large
and non-uniform variation, which can be clearly seen in
the zoomed-in subplot in figure 4. Now a linear or a lin-
ear + quadratic in a continuum extrapolation at fixed
temperature does not give a reasonable result using the
available lattice spacings.
We obtain a much better controlled continuum limit if



1st-order EWPT in BSM
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• A lot of motivation: EW Baryogenesis, Gravitational wave, etc

• Bubble nucleation seeded by impurities Cf) Simone's talk

(Fig credit: Kateryna Radchenko)
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Figure 4. Spectra of GWs from the electroweak phase transition for a few example points that
are also marked in Fig. 3. Projected sensitivities of the future based GW detectors such as LISA,
BBO as well as current sensitivity of LIGO are also shown.

At some point, this inevitably leads to an over-suppression of the thermal tunnelling by a

factor of S3/T . This would cause the field to remain in the initial unstable configuration

up until today (T⇤ ⇡ 0), which is of course excluded.

For very low transition temperatures, the vacuum decay is driven by quantum fluc-

tuations and is only suppressed by the action S4 [71] instead of S3/T in the exponent.

The quantum tunnelling action S4 still depends on the temperature since the potential

does. However, this dependence is very weak as the potential is close to its zero tempera-

ture value when the quantum tunnelling becomes important. Calculation of the action is

technically very similar to the procedure discussed in Section 3.2. The important di↵er-

ence in this case is that our solution is four-dimensional, as it also includes the Euclidean

time. Numerically, the resulting action is similar to the three-dimensional one and the

decay probability is much smaller than in the thermally-induced decay case. In the end,

this e↵ect saves some part of the parameter space as the integrated decay probability is

increased by adding this small probability to the integral between the temperature when

quantum tunnelling dominates and TBBN. However, this is a subdominant e↵ect and the

part of the parameter space where it enables the phase transition to occur is negligible.

Also, while the calculation of the GW signal in quite di↵erent in this case, the di↵erence

between vacuum energies in this case is still very large and the resulting signal magnitude

would be just as large as in the high temperature case, allowing its observation up to the

border of the allowed parameter space.

An important point is that for all possible values of mS , there is a significant region of

model parameter space where a successful EWBG is followed by an observable GW signal.

Specifically, for low masses, the coupling �HS is too small for indirect detection at future

based colliders (see e.g., Section 4.1) whereas the GW signal produced during the EWPT

– 12 –

[Beniwal+, 1702.06124]

ubiquitous in daily life, but still to be explored in cosmology



DFSZ axion model
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• 2HDM  + Singlet PQ scalar  H1,2 S

T

fa

vEW

⟨H1,2⟩ = 0

⟨H1,2⟩ ≃ vEW

ℒ ⊃ #
a
fa

GG̃⟨S⟩ = fa/ 2

⟨S⟩ = fa/ 2
axion string

≈

a

ℒ = ℒkin. − VS ( |S | ) − VEW (H1, H2) − (κS2H†
1 H2 + h . c . )

 charged under H1,2 U(1)PQ

[Zhitnitsky, ’80]  [Dine-Fischler-Srednicki, ’83]
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• 2HDM  + Singlet PQ scalar  H1,2 S

T

fa

vEW

⟨H1,2⟩ = 0

⟨H1,2⟩ ≃ vEW

ℒ ⊃ #
a
fa

GG̃⟨S⟩ = fa/ 2

⟨S⟩ = fa/ 2
axion string

≈

• SSB of  → impurity (axion string)U(1)PQ

• Two doublets  → can have 1st-order EWPTH1,2

• Nice setup to consider seeded EWPT
a

ℒ = ℒkin. − VS ( |S | ) − VEW (H1, H2) − (κS2H†
1 H2 + h . c . )

 charged under H1,2 U(1)PQ

[Zhitnitsky, ’80]  [Dine-Fischler-Srednicki, ’83]



Toy model inspired by DFSZ



DFSZ-like toy model
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ℒ = |∂μφ |2 + |∂μΦ |2 − VPQ( |Φ | ) − V( |φ | ) + (κ φ2 Φ2 + h . c . )

• Two complex scalar fields:  (SM Higgs like),  (PQ-like)φ Φ

• The model has global  sym.U(1)PQ × ℤ2

{Φ → eiξΦ
φ → e−iξφ {Φ → iΦ

φ → iφ

• -term is DFSZ-ish operatorκ

 is involved for  (feature of DFSZ)φ U(1)PQ

 in KSVZ|φ |2 |Φ |2



DFSZ-like toy model
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• Heavier scalar  takes VEV earlier → breaking of  → axion!Φ U(1)PQ

→ Φ ∼
fa
2

eiθ

T

fa

vEW

⟨φ⟩ = 0, ⟨Φ⟩ = fa/ 2

⟨φ⟩ ≃ vEW, ⟨Φ⟩ = fa/ 2

``axion string''

≈

How is this nucleation influenced by axion string?

|φ |

V( |φ | )

a



Critical bubble in toy model
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• The critical bubble in the background of axion string

Φ ∼
fa
2

eiθ

φ =
1

2
h(x) eiϕ(x)

ℒ =
1
2

(∂μh)2 +
h2

2
(∂μϕ)2 − V(h) + 2κ f 2

a h2 cos 2(θ + ϕ)

position-dependent cos potential

?
← axion string

← polar decomp. of Higgs

θ



Critical bubble in toy model
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• The critical bubble in the background of axion string

Φ ∼
fa
2

eiθ

φ =
1

2
h(x) eiϕ(x)

ℒ =
1
2

(∂μh)2 +
h2

2
(∂μϕ)2 − V(h) + 2κ f 2

a h2 cos 2(θ + ϕ)

position-dependent cos potential

?
← axion string

← polar decomp. of Higgs

θ

string
x

y

+ +
−

−

 @ cos 2ϕ θ = 0, π

 @ −cos 2ϕ θ = π/2, 3π/2



Numerical results for critical bubble
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Expansion after nucleation
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Expansion after nucleation
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Expansion after nucleation
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Expansion after nucleation
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Expansion after nucleation

14



Expansion after nucleation
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What are these lines?



Domain wall
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ℒ = |∂μφ |2 + |∂μΦ |2 − V( |φ | ) − VPQ( |Φ | ) + (κ φ2 Φ2 + h . c . )  sym.U(1)PQ × ℤ2

• DW exists in this model! → New mechanism of DW production



Domain wall
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• DW exists in this model! → New mechanism of DW production
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Tunneling Probability
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• This -term makes phenomenology much richer, but 

doesn't enhance the seeded tunneling itself. 😢

κ

→ add  like KSVZ setup [cf. Simone's talk]κ̃ |φ |2 |Φ |2

[Blasi-Mariotti, 2405.08060]

∵ ΔEc ≡ Ec |Seeded − Ec |Hom ∼ κ f2
a v2

EW R3

far from the stringon the string



Critical bubble with KSVZ-like op.
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• Comparison between seeded tunneling and normal one
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Critical bubble with KSVZ-like op.
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• Comparison between seeded tunneling and normal one
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Summary
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• PT seeded by impurity is very interesting.

• A lot of future directions: 

• real DFSZ

• funny shape of bubble → enhancement of GW signal?

• how affects EW baryogenesis?

• What is consequence of DW production?
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Backup



Perturbation theory

20

• It makes sense to consider perturbation w.r.t.  :κ

h(x) = h0(x) + δh(x) ϕ(x) = ϕ0 + δϕ(x)

?
thin-wall as 𝒪(κ0)

r

h0(r)

R

higgs mode: angular mode:
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• It makes sense to consider perturbation w.r.t.  :κ
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bounce solution w/ κ = 0 const (=0)

?
thin-wall as 𝒪(κ0)

r

h0(r)

R

higgs mode: angular mode:
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Perturbation theory
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• It makes sense to consider perturbation w.r.t.  :κ

h(x) = h0(x) + δh(x) ϕ(x) = ϕ0 + δϕ(x)

bounce solution w/ κ = 0 const (=0)

 correction𝒪(κ1)

?
• EOM for  fluctuations:𝒪(κ1)

−∂2
i δh + V′￼′￼EW(h0)δh = κh0(r)f 2

a cos 2θ

−∂i [h2
0(r)∂iδϕ] = − κf 2

a h2
0(r) sin 2θ

higgs mode:

angular mode:

thin-wall as 𝒪(κ0)

r

h0(r)

R

higgs mode: angular mode:



Linearized EOM for δh
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(−∂2
i + V′￼′￼EW(h0)) δh = κh0(r)f 2

a cos 2θ

• Spectral decomposition works well

δh = ∑
ω

∑
l,m

cω,l,m

ω2
Ylm(Ω) fω(ρ, z)

: harmonic funcYl,m

eigenvalue problem: 𝒪̂ fω(x) = ω2fω(x)

≡ 𝒪̂δh source

→ cω,l,m = ∫ d3x S(x)Yl,m fω ∝ δl2δm2

≡ S(x)

r

h0(r)

R
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(−∂2
i + V′￼′￼EW(h0)) δh = κh0(r)f 2

a cos 2θ
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≡ S(x)

• only  survives → Y2,2 ∝ cos 2θ δh ∝ cos 2θ

• leading is quasi-zeromodes: translation of wall → ω ∼ 1/R

r

h0(r)

R



Linearized EOM for δh
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(−∂2
i + V′￼′￼EW(h0)) δh = κh0(r)f 2

a cos 2θ

• Spectral decomposition works well

δh = ∑
ω

∑
l,m

cω,l,m

ω2
Ylm(Ω) fω(ρ, z)

: harmonic funcYl,m

eigenvalue problem: 𝒪̂ fω(x) = ω2fω(x)

≡ 𝒪̂δh source

→ cω,l,m = ∫ d3x S(x)Yl,m fω ∝ δl2δm2

≡ S(x)

• only  survives → Y2,2 ∝ cos 2θ δh ∝ cos 2θ

• leading is quasi-zeromodes: translation of wall → ω ∼ 1/R

x

y

+ +
−

−

δh



Linearized EOM for δh
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Linearized EOM for δh
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Linearized EOM for δh
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(−∂2
i + V′￼′￼EW(h0)) δh = κh0(r)f 2

a cos 2θ

• Green function method works well

δh = ∑
ω

∑
l,m

cω,l,m

ω2
Ylm(Ω) fω(ρ, z)

: harmonic funcYl,m(Ω)

eigenvalue problem: 𝒪̂ fω(x) = ω2fω(x)

≡ 𝒪̂δh source

→ cω,l,m = ∫ d3x S(x)Yl,m fω

≡ S(x)

= ∫ d3x′￼ ∑
ω

∑
l,m

1
ω2

Ylm(θ) fω(x)Y*l,m(θ′￼) f*ω(x′￼) S(x′￼)

Green function



Perturbation theory
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• It makes sense to consider perturbation w.r.t.  :κ

h(x) = h0(x) + δh(x) ϕ(x) = ϕ0 + δϕ(x)

bounce solution w/ κ = 0 const (=0)

 correction𝒪(κ1)

bounce solution w/ κ = 0 bounce up to 𝒪(κ1)

?



Linearized EOM
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• EOM for  fluctuations:𝒪(κ1)

−∂2
i δh + V′￼′￼EW(h0)δh = κh0(r)f 2

a cos 2θ

−∂i [h2
0(r)∂iδϕ] = − κf 2

a h2
0(r) sin 2θ

r

h0(r)

thin-wall as BG

• Eigenmode decomposition:

δh = ∑
ω

∑
l,m

cω,l,m

ω2
Ylm(θ) fω(x)

coefficient of expansion
harmonic funcs

eigenvalue of "kernel": 𝒪̂ fω(x) = ω2fω(x)

≡ 𝒪̂δh

solving Eq  determining ⇔ cω,l,m


