

Bubble wall dynamics from nonequilibrium QFT

Based on 2504.13725 with W.Ai, B.Garbrecht, C.Tamarit, M.Vanvlasselaer

Matthias Carosi

Theoretical Physics of the Early Universe TUM School of Natural Sciences Technical University of Munich

DESY Theory Workshop 24/09/2025

Outline

- The dynamics of a single bubble

 Evolution of the single bubble

 Kinetic vs. kick pictures
- 3 Friction from pair production
- Conclusions and outlook

When the two pressures balance

$$\mathcal{P}_{\mathrm{friction}} = \mathcal{P}_{\mathrm{driving}}$$

the system reaches a steady state

$$\Longrightarrow$$
terminal wall velocity $\equiv v_w$

When the two pressures balance

$$\mathcal{P}_{\mathrm{friction}} = \mathcal{P}_{\mathrm{driving}}$$

the system reaches a steady state

$$\Longrightarrow$$
terminal wall velocity $\equiv v_w$

Goal: identify v_w from the steady state condition.

Two main approaches exist for studying the dynamics of a single bubble

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0 \\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f, \varphi] \end{cases}$$

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0 \\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f, \varphi] \end{cases}$$

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z d\mathbb{P}_{i \to X}(\mathbf{p}) f_i(\mathbf{p}) \Delta p_{i \to X}^z$$

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0 \\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f, \varphi] \end{cases}$$

includes nonequilibrium effects

× misses scattering processes

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{kick} = \sum_{i,X} \int_{\mathbf{p}} 2p^z d\mathbb{P}_{i \to X}(\mathbf{p}) f_i(\mathbf{p}) \Delta p_{i \to X}^z$$

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0 \\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f, \varphi] \end{cases}$$

- includes nonequilibrium effects
- × misses scattering processes

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, d\mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z$$

- ✓ includes all scattering processes
- × only valid for ultrarelativistic walls

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0 \\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f, \varphi] \end{cases}$$

- includes nonequilibrium effects
- × misses scattering processes

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z d\mathbb{P}_{i \to X}(\mathbf{p}) f_i(\mathbf{p}) \Delta p_{i \to X}^z$$

- ✓ includes all scattering processes
- × only valid for ultrarelativistic walls

Why would we care about processes which are higher order in the couplings?

Mass gain

 p, m_a p', m_b'

Mass gain

Mixing

 p,m_a

 p, m_a p', m_b'

Particle production $\sim \log \gamma_w$ for scalars $\sim \gamma_w$ for gauge bosons

Mass gain

Mixing

Outline

- 11 The dynamics of a single bubble
- The language of nonequilibrium QFT: CTP and 2PI

 Brief review of the CTP formalism

 - Introducing the 2PI effective action
 - The full dynamical equations
 - Bubble FoM
 - Identifying sources of friction
- 3 Friction from pair production
- 4 Conclusions and outlook

The tools of nonequilibrium QFT

real time correlators \implies CTP formalism

dynamical equations \implies 2PI effective action

The path integral formulation of QFT is built to study transition rates: the *in-out formalism*

The path integral formulation of QFT is built to study transition rates: the in-out formalism

The path integral formulation of QFT is built to study transition rates: the in-out formalism

Using it, we compute transition amplitudes between asymptotic states

$$\mathcal{A} = \langle \Psi_{\text{OUT}} | \mathcal{O}(\hat{\phi}) | \Psi_{\text{IN}} \rangle = \mathcal{N} \int [\mathcal{D}\phi] \, \Psi_{\text{OUT}}^*(\phi) \mathcal{O}(\phi) \Psi_{\text{IN}}(\phi) e^{iS[\phi]}$$

The path integral formulation of QFT is built to study transition rates: the *in-out formalism*

Using it, we compute transition amplitudes between asymptotic states

$$\mathcal{A} = \left\langle \Psi_{ ext{OUT}} \middle| \mathcal{O}(\hat{\phi}) \middle| \Psi_{ ext{IN}} \right
angle = \left. \mathcal{N} \int \left[\mathcal{D} \phi \right] \Psi_{ ext{OUT}}^*(\phi) \mathcal{O}(\phi) \Psi_{ ext{IN}}(\phi) e^{iS[\phi]}$$

But how can we compute time (and space) dependent correlators?

Setting: we know the state at some initial time t_i and want to know what it will be at time t_f .

Setting: we know the state at some initial time t_i and want to know what it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know what it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know what it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know what it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

We introduce the label \pm for the time branch, double our degrees of freedom, and can now use all the tools from the path integral formalism.

The tools of nonequilibrium QFT

real time correlators \implies CTP formalism \checkmark dynamical equations \implies 2PI effective action

We introduce the generator of connected one-

point functions

$$e^{W[J]} = Z[J] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x)}$$

We introduce the generator of connected one-

point functions

$$e^{W[J]} = Z[J] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x)}$$

and define the one-particle-irreducible (1PI) effective action

$$\Gamma_{1PI}[\varphi \quad] = \max_{J} - W[J \quad] + \int_{x} J(x)\varphi(x)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2} \int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the one-particle-irreducible (1PI) effective action

$$\Gamma_{1PI}[\varphi] = \max_{J} - W[J] + \int_{x} J(x)\varphi(x)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2} \int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the two-particle-irreducible (2PI) effective action

$$\Gamma_{2\mathrm{PI}}[\varphi, \Delta] = \max_{J,R} -W[J, R] + \int_{x} J(x)\varphi(x) + \frac{1}{2} \int_{x,y} \Delta(x, y) R(x, y)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2} \int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the two-particle-irreducible (2PI) effective action

$$\Gamma_{\mathrm{2PI}}[\varphi,\Delta] = \max_{J,R} \ -W[J,R] + \int_x J(x)\varphi(x) + \frac{1}{2} \int_{x,y} \Delta(x,y) R(x,y)$$

Equations for the one- and two-point functions are then easily generated

$$\frac{\delta\Gamma_{\rm 2PI}}{\delta\varphi(x)} = 0 \qquad \frac{\delta\Gamma_{\rm 2PI}}{\delta\Delta(x,y)} = 0$$

The tools of nonequilibrium QFT

real time correlators \implies CTP formalism

dynamical equations \implies 2PI effective action

The full dynamical equations

The equations of motion are now readily obtained

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{\text{2PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{dm_{\varphi}^{2}}{d\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}[\varphi,\Delta]}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi} = 0$$

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}[\varphi,\Delta]}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi} = 0$$

$$\frac{\delta\Gamma_{\text{2PI}}}{\delta\Delta^{ab}(x,y)} = 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i\frac{\delta\Gamma_{2}[\varphi,\Delta]}{\delta\Delta^{ab}(x,y)} = 0$$

The equations of motion are now readily obtained

$$\frac{\delta \Gamma_{\text{2PI}}}{\delta \varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta \varphi(x)} - \frac{1}{2} \frac{\mathrm{d} m_{\varphi}^{2}}{\mathrm{d} \varphi(x)} \Delta^{T}(x,x) + \frac{\delta \Gamma_{2}[\varphi,\Delta]}{\delta \varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi} = 0$$

$$\frac{\delta\Gamma_{\text{2PI}}}{\delta\Delta^{ab}(x,y)} = 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i\frac{\delta\Gamma_{2}[\varphi,\Delta]}{\delta\Delta^{ab}(x,y)} = 0$$

For a scalar theory with quartic self-interaction, we have

$$\mathcal{L}_{\text{int}} = -\frac{\lambda}{4!}\phi^4 \longrightarrow i\Gamma_2 = \bigcirc + \bigcirc + \bigcirc + \cdots$$

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{\text{2PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{dm_{\varphi}^{2}}{d\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}[\varphi,\Delta]}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi} = 0$$

$$\frac{\delta \Gamma_{\rm 2PI}}{\delta \Delta^{ab}(x,y)} = \ 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i \frac{\delta \Gamma_{\rm 2}[\varphi,\Delta]}{\delta \Delta^{ab}(x,y)} = 0$$

For a scalar theory with quartic self-interaction, we have

The Wigner transform

To put the equations in a useful form, we go to Wigner space

$$\overline{\Delta}^{ab}(k,x) = \int d^4r \ e^{ik \cdot r} \Delta^{ab} \left(x + \frac{r}{2}, x - \frac{r}{2} \right)$$

The Wigner transform

To put the equations in a useful form, we go to Wigner space

$$\overline{\Delta}^{ab}(k,x) = \int d^4r \, e^{ik \cdot r} \Delta^{ab} \left(x + \frac{r}{2}, x - \frac{r}{2} \right)$$

Generally, the equations contain derivatives in x of all orders. To leading order in the derivative (or gradient) expansion we can solve for the two-point functions

The Wigner transform

To put the equations in a useful form, we go to Wigner space

$$\overline{\Delta}^{ab}(k,x) = \int d^4r \, e^{ik \cdot r} \Delta^{ab} \left(x + \frac{r}{2}, x - \frac{r}{2} \right)$$

Generally, the equations contain derivatives in x of all orders. To leading order in the derivative (or gradient) expansion we can solve for the two-point functions

$$\overline{\Delta}^{T}(k,x) = \frac{\mathrm{i}}{k^2 - m^2 + \mathrm{i}\varepsilon} + 2\pi\delta(k^2 - m^2) \left[\vartheta(k^0) f(\mathbf{k}, x) + \vartheta(-k^0) f(-\mathbf{k}, x) \right]$$

$$\overline{\Delta}^{<}(k,x) = 2\pi\delta(k^2 - m^2) \left[\vartheta(k^0) f(\mathbf{k}, x) + \vartheta(-k^0) (1 + f(-\mathbf{k}, x)) \right]$$

Having solved for the two-point function at leading order in the gradients, we have the EoM for the bubble wall

$$\Box \varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) + \int \mathrm{d}^4 y \, \Pi^R(x, y) \varphi(y) = 0$$

Having solved for the two-point function at leading order in the gradients, we have the EoM for the bubble wall

$$\Box \varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) + \int \mathrm{d}^4 y \, \Pi^R(x, y) \varphi(y) = 0$$

One-loop term

$$\frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) = \frac{\lambda}{2} \varphi(x) \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon} + \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3 2 E_{\mathbf{k}}} f(\mathbf{k}, x)$$

Having solved for the two-point function at leading order in the gradients, we have the EoM for the bubble wall

$$\Box \varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) + \int \mathrm{d}^4 y \, \Pi^R(x, y) \varphi(y) = 0$$

One-loop term

$$\frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) = \underbrace{\frac{\lambda}{2} \varphi(x) \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon}}_{\text{T=0 correction to } V_0'} + \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3 2 E_{\mathbf{k}}} f(\mathbf{k}, x)$$

Having solved for the two-point function at leading order in the gradients, we have the EoM for the bubble wall

$$\Box \varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) + \int \mathrm{d}^4 y \, \Pi^R(x, y) \varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\overline{\Delta}^{T}(k,x) = \underbrace{\frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\frac{i}{k^{2}-m^{2}+i\epsilon}}_{\mathsf{T=0\;correction\;to\;V_{0}'}} + \underbrace{\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}}f(\mathbf{k},x)}_{f=f_{\mathrm{eq}}+\delta f=\mathrm{thermal\;corr.\;+\;off-eq.}}$$

Having solved for the two-point function at leading order in the gradients, we have the EoM for the bubble wall

$$\Box \varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k, x) + \int \mathrm{d}^4 y \, \Pi^R(x, y) \varphi(y) = 0$$

One-loop term

$$\frac{1}{2} \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \overline{\Delta}^T(k,x) = \frac{\lambda}{2} \varphi(x) \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{i}{k^2 - m^2 + i\epsilon} + \frac{\mathrm{d} m_{\varphi}^2}{\mathrm{d} \varphi(x)} \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3 2 E_{\mathbf{k}}} f(\mathbf{k},x)$$

Two-loop term: retarded self-energy

$$\Pi^{R}(x,y) = \Pi^{++}(x,y) - \Pi^{-+}(x,y)$$

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}\varphi(z) + V'_{\mathrm{eff}}(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \frac{\mathrm{d}z'_{\varphi}\pi^R(z, z')\varphi(z')}{\int \mathrm{d}\mathbf{x}_{\parallel} \mathrm{d}\mathbf{x'}_{\parallel}\Pi^R(\mathbf{x}, \mathbf{x'})} = 0$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\text{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\int_{-\delta}^{\delta} dz \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V'_{\text{eff}}(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \int_{-\delta}^{\delta} dz \, \frac{d}{dz} \left[\frac{1}{2} \left(\frac{d\varphi(z)}{dz} \right)^{2} + V_{\text{eff}}(\varphi(z), T) \right] = \int_{-\delta}^{\delta} dz \, \left[\frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} - \frac{dm_{\varphi}^{2}}{dz} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{d\varphi(z)}{dz} \int dz' \, \pi^{R}(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} dz \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V'_{\text{eff}}(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \int_{-\delta}^{\delta} dz \, \frac{d}{dz} \left[\frac{1}{2} \left(\frac{d\varphi(z)}{dz} \right)^{2} + V_{\text{eff}}(\varphi(z), T) \right] = \int_{-\delta}^{\delta} dz \left[\frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} - \frac{dm_{\varphi}^{2}}{dz} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{d\varphi(z)}{dz} \int dz' \, \pi^{R}(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} dz \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V'_{\text{eff}}(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} dz \, \frac{d}{dz} \left[\frac{1}{2} \underbrace{\left(\frac{d\varphi(z)}{dz} \right)^{2} + V_{\text{eff}}(\varphi(z), T)}_{\Delta V_{\text{eff}} \equiv \mathcal{P}_{\text{driving}}} \right]}_{\Delta V_{\text{eff}} \equiv \mathcal{P}_{\text{driving}}} = \int_{-\delta}^{\delta} dz \left[\frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} - \frac{dm_{\varphi}^{2}}{dz} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{d\varphi(z)}{dz} \int dz' \, \pi^{R}(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} dz \, \frac{d}{dz} \left[\frac{1}{2} \left(\frac{d\varphi(z)}{dz} \right)^{2} + V_{\text{eff}}(\varphi(z), T) \right]}_{\Delta V_{\text{eff}} \equiv \mathcal{P}_{\text{driving}}} = \int_{-\delta}^{\delta} dz \, \left[\frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right] \\ - \frac{dm_{\varphi}^{2}}{dz} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \\ - \frac{d\varphi(z)}{dz} \int dz' \, \pi^{R}(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} dz \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V'_{\text{eff}}(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} dz \, \frac{d}{dz} \left[\frac{1}{2} \left(\frac{d\varphi(z)}{dz} \right)^{2} + V_{\text{eff}}(\varphi(z), T) \right]}_{\Delta V_{\text{eff}} \equiv \mathcal{P}_{\text{driving}}} = \int_{-\delta}^{\delta} dz \, \left[\frac{\partial V_{\text{eff}}}{\partial T} \frac{dT}{dz} \right] \equiv \mathcal{P}_{\text{LTE}}$$

$$- \frac{dm_{\varphi}^{2}}{dz} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) = \mathcal{P}_{\text{dissipative}}$$

$$- \frac{d\varphi(z)}{dz} \int dz' \, \pi^{R}(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} dz \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^{2} + V_{\mathrm{eff}}(\varphi(z), T) \right]}_{\Delta V_{\mathrm{eff}} \equiv \mathcal{P}_{\mathrm{driving}}} = \int_{-\delta}^{\delta} \mathrm{d}z \, \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} \right] \equiv \mathcal{P}_{\mathrm{LTE}}$$

$$-\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \equiv \mathcal{P}_{\mathrm{dissipative}}$$

$$-\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^{R}(z, z') \varphi(z') \right] \equiv \mathcal{P}_{\mathrm{vertex}}$$

Outline

- The dynamics of a single bubble
- The language of nonequilibrium QFT: CTP and 2PI
- Friction from pair production
- 4 Conclusions and outlook

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z \left| \tilde{\varphi}(q^z) \right|^2 \tilde{\pi}^R(-q^z)$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z |\tilde{\varphi}(q^z)|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\operatorname{Im}_{\tilde{\pi}^R(q) = -\operatorname{Im}_{\tilde{\pi}^R}(-q)}, \quad \operatorname{Re}_{\tilde{\pi}^R(q) = \operatorname{Re}_{\tilde{\pi}^R}(-q)} \right] = -\int \frac{dq^z}{2\pi} q^z |\tilde{\varphi}(q^z)|^2 \operatorname{Im}_{\tilde{\pi}^R}(q^z)$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z |\tilde{\varphi}(q^z)|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\operatorname{Im}_{\tilde{\pi}^R(q) = -\operatorname{Im}_{\tilde{\pi}^R(-q)}, \quad \operatorname{Re}_{\tilde{\pi}^R(q) = \operatorname{Re}_{\tilde{\pi}^R(-q)}} \right] = -\int \frac{dq^z}{2\pi} q^z |\tilde{\varphi}(q^z)|^2 \operatorname{Im}_{\tilde{\pi}^R(q^z)}$$

$$\mathcal{L}_{\rm int} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_{\chi} \gg m_{\phi}, T \Longrightarrow f_{\chi} \sim 0$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z |\tilde{\varphi}(q^z)|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\operatorname{Im}_{\tilde{\pi}^R(q) = -\operatorname{Im}_{\tilde{\pi}^R(-q)}, \quad \operatorname{Re}_{\tilde{\pi}^R(q) = \operatorname{Re}_{\tilde{\pi}^R(-q)}} \right] = -\int \frac{dq^z}{2\pi} q^z |\tilde{\varphi}(q^z)|^2 \operatorname{Im}_{\tilde{\pi}^R(q^z)}$$

$$\mathcal{L}_{\rm int} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_{\chi} \gg m_{\phi}, T \Longrightarrow f_{\chi} \sim 0$$

$$\operatorname{Im} \tilde{\pi}^R(q^z) \supset \operatorname{Im} \left[\begin{array}{c} \chi \\ \phi \\ \chi \end{array} \right]$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z |\tilde{\varphi}(q^z)|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\operatorname{Im}_{\tilde{\pi}^R(q) = -\operatorname{Im}_{\tilde{\pi}^R(-q)}, \quad \operatorname{Re}_{\tilde{\pi}^R(q) = \operatorname{Re}_{\tilde{\pi}^R(-q)}} \right] = -\int \frac{dq^z}{2\pi} q^z |\tilde{\varphi}(q^z)|^2 \operatorname{Im}_{\tilde{\pi}^R(q^z)}$$

$$\mathcal{L}_{\rm int} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_{\chi} \gg m_{\phi}, T \Longrightarrow f_{\chi} \sim 0$$

$$\operatorname{Im} \tilde{\pi}^R(q^z) \supset \operatorname{Im} \left[\begin{array}{c} \chi \\ \downarrow \\ \chi \end{array} \right] = \left[\begin{array}{c} \chi \\ \downarrow \\ \chi \end{array} \right]^2$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int dz dz' \frac{d\varphi(z)}{dz} \pi^R(z, z') \varphi(z') \simeq -\int \frac{dq^z}{2\pi} i q^z |\tilde{\varphi}(q^z)|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\operatorname{Im}_{\tilde{\pi}^R(q) = -\operatorname{Im}_{\tilde{\pi}^R(-q)}, \quad \operatorname{Re}_{\tilde{\pi}^R(q) = \operatorname{Re}_{\tilde{\pi}^R(-q)}} \right] = -\int \frac{dq^z}{2\pi} q^z |\tilde{\varphi}(q^z)|^2 \operatorname{Im}_{\tilde{\pi}^R(q^z)}$$

$$\mathcal{L}_{\rm int} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_{\chi} \gg m_{\phi}, T \Longrightarrow f_{\chi} \sim 0$$

$$\operatorname{Im} \tilde{\pi}^R(q^z) \supset \operatorname{Im} \left[\begin{array}{c} \chi \\ \downarrow \\ \chi \end{array} \right]^2 \Longrightarrow \operatorname{pair production!}$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

$$(0,0,q^{z})$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\parallel} - \mathbf{k}_{1, \parallel} - \mathbf{k}_{2, \parallel}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)}) \times f_{\phi}(\mathbf{p}) \Delta p^z |\tilde{\varphi}(\Delta p^z)|^2$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\parallel} - \mathbf{k}_{1,\parallel} - \mathbf{k}_{2,\parallel}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
 density of incoming particles
$$\times f_{\phi}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2$$

The self-energy

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\parallel} - \mathbf{k}_{1,\parallel} - \mathbf{k}_{2,\parallel}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
 density of incoming particles
$$\times f_{\phi}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2$$
 momentum exchange

The self-energy

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)}) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\parallel} - \mathbf{k}_{1, \parallel} - \mathbf{k}_{2, \parallel}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
 density of incoming particles
$$\times f_{\phi}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2 \longleftarrow \text{Fourier tf. of the wall}$$
 momentum exchange

The self-energy

The imaginary part of the self-energy is computed via CTP cutting rules

$$\begin{split} \operatorname{Im} \tilde{\pi}^R(q^z) &= -\frac{i}{2} \left(\tilde{\pi}^{>}(q^z) - \tilde{\pi}^{<}(q^z) \right) \\ &\simeq \frac{g^2}{4} \int_{\mathbf{p},\mathbf{k}_1} \underbrace{\operatorname{recall:} \mathcal{P}_{\mathrm{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, \mathrm{d} \mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z}_{2} \right) \left[f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p}) \right] \\ &\text{and the pressure} \end{split}$$

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p},\mathbf{k}_1,\mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\parallel} - \mathbf{k}_{1,\parallel} - \mathbf{k}_{2,\parallel}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)}) \\ &\text{density of incoming particles} \\ &\overset{\times}{f_{\phi}}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2 \longleftarrow \text{Fourier tf. of the wall} \end{split}$$

momentum exchange

Outline

- The dynamics of a single bubble
- The language of nonequilibrium QFT: CTP and 2PI
- Friction from pair production
- Conclusions and outlook

The full bubble wall dynamics can be described using the language of nonequilibrium QFT (CTP) and the 2PI effective action.

- The full bubble wall dynamics can be described using the language of nonequilibrium QFT (CTP) and the 2PI effective action.
- Within this framework, we provide a *first-principle derivation* of the kick picture.

- The full bubble wall dynamics can be described using the language of nonequilibrium QFT (CTP) and the 2PI effective action.
- Within this framework, we provide a *first-principle derivation* of the kick picture.
- In the gradient expansion, we find dynamical equations amenable to numerical implementation, e.g. in *WallGo* [Eckstedt et al. '24]. These include, order by order, all **thermal** and **quantum** effects.

- The full bubble wall dynamics can be described using the language of nonequilibrium QFT (CTP) and the 2PI effective action.
- Within this framework, we provide a *first-principle derivation* of the kick picture.
- In the gradient expansion, we find dynamical equations amenable to numerical implementation, e.g. in *WallGo* [Eckstedt et al. '24]. These include, order by order, all **thermal** and **quantum** effects.

Future directions

- investigate out-of-equilibrium effects, such as gauge boson saturation,
- find general bounds for friction strength,
- study numerically the effect of quantum effects for intermediate wall velocities.

BACK-UP SLIDES

A comment on the gradient expansion

In our derivation, we made extensive use of the gradient expansion. What is the validity of this approximation?

small field gradients
$$\equiv \frac{\nabla \varphi}{k} \ll 1$$

$$abla arphi \sim rac{1}{L_w}\,, \qquad L_w \equiv {
m wall \ width}$$

 $k \sim \gamma_w T \, \equiv \,$ typical momentum of a particle in the wall frame

$$\Longrightarrow \gamma_w T L_w \gg 1$$

The gradient expansion is valid if the wall is either **fast** or **thick**. For the numerical and analytical results, we assumed the plasma outside the bubble to be **in equilibrium**, which is once again only valid if the wall is very fast.

Pair production in the ultrarelativistic limit

Analytic formula for an ultrarelativistic (tanh) wall in the limit of light ϕ -particles

$$\mathcal{P}_{\phi \to \chi \chi}^{\gamma_w \to \infty} \approx \frac{g^2 v_b^2 T^2}{24 \times 32\pi^2} \log \left(\frac{\gamma_w T}{2\pi L_w m_\chi^2} \right)$$

which approach the result from the kick picture. Similarly, we show in our work that particle mixing and transition radiation are also captured within this framework.

Mixing

Assume two mixing scalar species χ and s interacting through the background

$$\mathcal{L}_{\mathrm{int}} \supset -\kappa \varphi \chi s$$
, and $m_{\chi} \gg m_s$

Particles χ are absent in the plasma but are generated via mixing as s-particles go through the wall. In the ultrarelativistic limit

$$\mathcal{P}_{s\to\chi}^{\gamma_w\to\infty} = \frac{2\kappa^2 v_b^2}{m_\chi^2} \frac{T^2}{24}$$

