Impact of the recent LHC results on supersymmetry

Kazuki Sakurai (DESY)

Collaboration with:

B.C.Allanach (DAMTP, University of Cambridge)T.J. Khoo (Cavendish, University of Cambridge)K.Takayama (Nagoya University)

Based on:

arXiv:1106.3794 [hep-ph]

arXiv:1110.1119 [hep-ph]

31/10/2011 DESY

LHC status

> 5/fb of data has been
accumulated in 2011.

LHC is working very well.

New physics searches

• No exotic signature, beyond the fluctuation, has been observed...

New physics searches

• No exotic signature, beyond the fluctuation, has been observed...

New physics searches

• No exotic signature, beyond the fluctuation, has been observed...

What is the status of SUSY?

Contents

- A review of SUSY searches (limit on the CMSSM)
- Constraint on the mAMSB
- Constraint on a light 3rd generation model
- Summary

- gauge coupling unification
- dark matter

-- R-parity makes LSP stable. LSP, in the majority of parameter space, is a neutral particle (neutralino in the MSSM, gravitino in the GMSB).

naturalness

-- providing a solution of the fine-tuning problem $V = -m_H^2 H^2 + \lambda H^4$

- gauge coupling unification
- dark matter

-- R-parity makes LSP stable. LSP, in the majority of parameter space, is a neutral particle (neutralino in the MSSM, gravitino in the GMSB).

naturalness

-- providing a solution of the fine-tuning problem $V = -m_H^2 H^2 + \lambda H^4$

- gauge coupling unification
- dark matter

-- R-parity makes LSP stable. LSP, in the majority of parameter space, is a neutral particle (neutralino in the MSSM, gravitino in the GMSB).

naturalness

-- providing a solution of the fine-tuning problem $V=-m_{H}^{2}H^{2}+\lambda H^{4}$

- gauge coupling unification
- dark matter

-- R-parity makes LSP stable. LSP, in the majority of parameter space, is a neutral particle (neutralino in the MSSM, gravitino in the GMSB).

naturalness

-- providing a solution of the fine-tuning problem $V = -m_H^2 H^2 + \lambda H^4$

$$\begin{aligned} \mathbf{O}((\mathbf{10^2 GeV})^2) \quad & 2\lambda v^2 = m_H^2(v) \\ & = m_H^2(\Lambda) + \underbrace{\Delta m_H^2}_{\sim m_{SUSY}^2} & \underbrace{\mathsf{SUSY}}_{H_{--}} & \underbrace{\mathsf{f}}_{H_{--}} & \underbrace{\mathsf{f}}_{H_{$$

SUSY particles should be produced at the LHC

SUSY cross section @ 7 TeV LHC

In 1 fb⁻¹ about 100 $\tilde{q}\tilde{g}$ pairs are produced if $m_{\tilde{q}} = m_{\tilde{q}} = 900 \,\text{GeV}$.

Background

EBecause of R-parity, SUSY particles have to be produced in pairs and decay to the LSP. \in

 \Rightarrow 100 events/day@10³³ cm⁻²s⁻¹

EBecause of R-parity, SUSY particles have to be produced in pairs and decay to the LSP. \in

• large missing energy

 \Rightarrow 100 events/day@10³³ cm⁻²s⁻¹

EBecause of R-parity, SUSY particles have to be produced in pairs and $\stackrel{\text{formula}}{\text{decay to the LSP.}}$

• multiple high pT jets

\Rightarrow 30 svents/day@10³³ cm⁻²s⁻¹

EBecause of R-parity, SUSY particles have to be produced in pairs and $\stackrel{\text{e}}{\leftarrow}$ decay to the LSP.

- large missing energy
- multiple high pT jets
- b-jets

€

• leptons

Variables for cut

$$p_T^{(1)} > p_T^{(2)} > p_T^{(3)}, \dots$$
$$H_T = \sum_i |p_T^{(i)}|$$

$$M_{\rm eff} = H_T + E_T^{\rm miss}$$

ATLAS, 1109.6572

Signal Region	\geq 2-jet	\geq 3-jet	≥ 4-jet	High mass
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2
m _{eff}	> 1000	> 1000	> 500/1000	> 1100

ATLAS, 1109.6572

High mass Signal Region \geq 2-jet \geq 3-jet \geq 4-jet $E_{\mathrm{T}}^{\mathrm{miss}}$ > 130 > 130 > 130 > 130 Leading jet $p_{\rm T}$ > 130 > 130 > 130 > 130 Second jet $p_{\rm T}$ > 40 > 40 > 40 > 80 Third jet $p_{\rm T}$ > 80 > 40 > 40 Fourth jet $p_{\rm T}$ > 80 > 40 $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} > 0.4 > 0.4 > 0.4 > 0.4 $E_{\rm T}^{\rm miss}/m_{\rm eff}$ > 0.3 > 0.25 > 0.25 > 0.2 > 1000 > 1000 > 500/1000 > 1100 $m_{\rm eff}$

2-jet signal region:

ATLAS, 1109.6572

\geq 2-jet \geq 3-jet High mass Signal Region \geq 4-jet $E_{\mathrm{T}}^{\mathrm{miss}}$ > 130 > 130 > 130 > 130 Leading jet $p_{\rm T}$ > 130 > 130 > 130 > 130 Second jet $p_{\rm T}$ > 40 > 40 > 40 > 80 Third jet $p_{\rm T}$ > 80 > 40 > 40 Fourth jet $p_{\rm T}$ > 80 > 40 $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} > 0.4 > 0.4 > 0.4 > 0.4 $E_{\rm T}^{\rm miss}/m_{\rm eff}$ > 0.3 > 0.25 > 0.25 > 0.2 > 1000 > 1000 > 500/1000 > 1100 $m_{\rm eff}$

3-jet signal region:

ATLAS, 1109.6572

\geq 3-jet High mass Signal Region \geq 2-jet \geq 4-jet $E_{\mathrm{T}}^{\mathrm{miss}}$ > 130 > 130 > 130 > 130 Leading jet $p_{\rm T}$ > 130 > 130 > 130 > 130 Second jet $p_{\rm T}$ > 40 > 40 > 40 > 80 Third jet $p_{\rm T}$ > 80 > 40 > 40 Fourth jet $p_{\rm T}$ > 80 > 40 $\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$)_{min} > 0.4 > 0.4 > 0.4 > 0.4 $E_{\rm T}^{\rm miss}/m_{\rm eff}$ > 0.3 > 0.25 > 0.25 > 0.2 > 1000 > 1000 > 500/1000 > 1100 $m_{\rm eff}$

4-jet signal region:

ATLAS, 1109.6572

Signal Region	≥ 2-jet	≥ 3-jet	≥ 4-jet	High mass
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	_	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $\vec{P}_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$	> 1000	> 1000	> 500/1000	> 1100

	Process	Signal Region						
	1100055	$> 2_{\text{iet}}$	> 3_iet	\geq 4-jet,	\geq 4-jet,	High mass		
		≥ 2-jet	≥ 5-jet	$m_{\rm eff} > 500 { m ~GeV}$	$m_{\rm eff} > 1000 { m ~GeV}$	111511 111055		
	Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$		
	W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349 \pm 30 \pm 122$	$13.0 \pm 2.2 \pm 4.7$	$2.1 \pm 0.8 \pm 1.1$		
	<i>tt</i> + single top	$3.4 \pm 1.6 \pm 1.6$	$5.9 \pm 2.0 \pm 2.2$	$425 \pm 39 \pm 84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$		
SM	QCD multi-jet	$0.22 \pm 0.06 \pm 0.24$	$0.92 \pm 0.12 \pm 0.46$	$34 \pm 2 \pm 29$	$0.73 \pm 0.14 \pm 0.50$	$2.10 \pm 0.37 \pm 0.82$		
prediction-	→ Total	$62.4 \pm 4.4 \pm 9.3$	$54.9 \pm 3.9 \pm 7.1$	$1015 \pm 41 \pm 144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$		
observed -	→ Data	58	59	1118	40	18		

How many SUSY events are allowed?

prediction for # of events after the cut:

 $\lambda = \lambda_{SM} + \lambda_{SUSY}$

provability observing *n* events:

$$P(n) = \frac{e^{-\lambda}\lambda^n}{n!}$$

Incompatibility between model and data (p-value):

$$p_v = \sum_{n=0}^{n_{obs}} P(n)$$
 The model is excluded at 95% CL,
if $p_v < 0.05$.

• 95% CL upper bound on λ_{SUSY} in each signal region

signal region	$\geq 2{ m jets}$	$\geq 3{ m jets}$	$\geq 4 \text{ jets}(a)$	$\geq 4 \text{ jets}(b)$	High mass
upper bound	22	25	429	27	17

- λ_{SUSY} can be estimated in each model point by the MC simulation.
 - \rightarrow One can make a judgement whether or not the model point is excluded.

- λ_{SUSY} can be estimated in each model point by the MC simulation.
 - \rightarrow One can make a judgement whether or not the model point is excluded.

- λ_{SUSY} can be estimated in each model point by the MC simulation.
 - → One can make a judgement whether or not the model point is excluded.

- $m_{\tilde{g}} \simeq m_{\tilde{q}} > 950 \,\mathrm{GeV}$
- $m_{1/2} \gtrsim 200 \,\mathrm{GeV}$

```
independently on m_0
```

•
$$m_{1/2}\gtrsim 300\,{
m GeV}$$
 if mo < I TeV

- λ_{SUSY} can be estimated in each model point by the MC simulation.
 - → One can make a judgement whether or not the model point is excluded.

- $m_{\tilde{g}} \simeq m_{\tilde{q}} > 950 \,\mathrm{GeV}$
- $m_{1/2} \gtrsim 200 \,\mathrm{GeV}$

```
independently on m_0
```

•
$$m_{1/2}\gtrsim 300\,{
m GeV}$$
 if m_0 < ITeV

• CMS α_T analysis puts more stringent limit in small m_0 , large $m_{1/2}$ region

Signal region	2-jet	4-jet	
рТ	> 40	> 80	
E _{Tmiss}	> 130	> 130	
meff	> 1000	> 1100	
stat. error (obs. events)	13% (58)	28% (18)	
sys. SM, sys. SUSY	8%, ~30%	24%, ~30%	

0-lepton 1000/pb

• How to get more stringent exclusion limit?

Signal region	2-jet	4-jet	
рТ	> 40	> 80	
E _{Tmiss}	> 130	> 130	
meff	> 1000	> 1100	
stat. error (obs. events)	13% (58)	28% (18)	
sys. SM, sys. SUSY	8%, ~30%	24%, ~30%	

0-lepton 1000/pb

- How to get more stringent exclusion limit?
- Accumulate more data?

- How to get more stringent exclusion limit?
- Accumulate more data?
- Improvement only on the statistical error doesn't help much.

	0-lepton 1000/pb		0-lepton 165/pb		0-lepton 35/pb	
Signal region	2-jet	4-jet	2-jet	4-jet	2-jet	4-jet
рТ	>40	> 80	> 40	> 40	> 40	-
E _{Tmiss}	> 130	>130	> 130	> 130	> 100	-
meff	> 1000	> 1100	> 1000	> 1000	> 500	-
stat. error (obs. events)	13% (58)	28% (18)	29% (10)	37% (7)	9% (87)	-
sys. SM, sys. SUSY	8%, ~30%	24%, ~30%	13%, ~30%	17%, ~30%	34%, ~30%	-

- How to get more stringent exclusion limit?
- Accumulate more data?
- Improvement only on the statistical error doesn't help much.
- Imposing more stringent cuts is important. (stat. and sys. can be balanced)

	0-lepton 1000/pb		0-lepton 165/pb		0-lepton 35/pb	
Signal region	2-jet	4-jet	2-jet	4-jet	2-jet	4-jet
рТ	> 40	> 80	> 40	> 40	> 40	-
E _{Tmiss}	> 130	> 130	> 130	> 130	> 100	-
meff	> 1000	> 1100	> 1000	> 1000	> 500	-
stat. error (obs. events)	13% (58)	28% (18)	29% (10)	37% (7)	9% (87)	-
sys. SM, sys. SUSY	8%, ~30%	24%, ~30%	13%, ~30%	17%, ~30%	34%, ~30%	-

Constraint on mAMSB

- Observed gluino and squark mass bounds can only be applied to the CMSSM.
- One should also look at constraints on the other SUSY models (CMSSM \neq SUSY).
- We study the constraints on the mAMSB model points.

Softsusy: calculation of low energy spactrum
Susyhit: calculation of decay branching ratios
Prospino2: NLO cross section
Herwig++: event generation, parton shower, hadronisation
Delphes: detector simulation

minimal Anomaly Mediated SUSY Breaking (mAMSB)

• AMSB: assumed that a spontaneous SUSY breaking in hidden sector is mediated to the MSSM sector by anomalous violation of a conformal symmetry. L. Randall, R. Sundrum

. Randall, R. Sundrum 9810155[hep-th]

$$M_a = \frac{\beta_{g_a}}{g_a} m_{3/2} \qquad m_{ij}^2 = -\frac{1}{4} \left(\frac{\partial \gamma_{ij}}{\partial g} \beta_g + \frac{\partial \gamma_{ij}}{\partial y} \beta_y \right) m_{3/2}^2 \qquad A_{ijk} = -\frac{\beta_y}{y} m_{3/2}$$

minimal Anomaly Mediated SUSY Breaking (mAMSB)

• AMSB: assumed that a spontaneous SUSY breaking in hidden sector is mediated to the MSSM sector by anomalous violation of a conformal symmetry. L. Randall, R. Sundrum

9810155[hep-th]

$$M_a = \frac{\beta_{g_a}}{g_a} m_{3/2} \qquad m_{ij}^2 = -\frac{1}{4} \Big(\frac{\partial \gamma_{ij}}{\partial g} \beta_g + \frac{\partial \gamma_{ij}}{\partial y} \beta_y \Big) m_{3/2}^2 \qquad A_{ijk} = -\frac{\beta_y}{y} m_{3/2}$$

Flavour and CP violations are safely suppressed, but sleptons become tachyonic, breaking EM symmetry.

$$m_{\tilde{e}_R}^2 = -\frac{m_{3/2}^2}{(16\pi^2)^2} \frac{198}{25} g_1^4$$

minimal Anomaly Mediated SUSY Breaking (mAMSB)

• AMSB: assumed that a spontaneous SUSY breaking in hidden sector is mediated to the MSSM sector by anomalous violation of a conformal symmetry.

$$M_a = \frac{\beta_{g_a}}{g_a} m_{3/2} \qquad m_{ij}^2 = -\frac{1}{4} \Big(\frac{\partial \gamma_{ij}}{\partial g} \beta_g + \frac{\partial \gamma_{ij}}{\partial y} \beta_y \Big) m_{3/2}^2 \qquad A_{ijk} = -\frac{\beta_y}{y} m_{3/2}$$
9810155[hep-th]

Flavour and CP violations are safely suppressed, but sleptons become tachyonic, breaking EM symmetry.

$$m_{\tilde{e}_R}^2 = -\frac{m_{3/2}^2}{(16\pi^2)^2} \frac{198}{25} g_1^4$$

 Add an additional soft mass m₀ to all the scalar masses at low energy to make slepton masses positive.
 T. Gherghetta, G. F. Giudice, J. D. Wells

9904378[hep-ph]

 $m_{3/2}, m_0 \tan\beta, \operatorname{sign}(\mu)$
Mass spectrum

 $\tan\beta=10, \mu>0$

gaugino mass:
$$M_a = \frac{\beta_{g_a}}{g_a} m_{3/2} \longrightarrow |M_3| \gg |M_1| \gg |M_2|$$

• $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \chi_1^0$, but π^{\pm} is extremely soft. wino LSP $m_{\tilde{\chi}^{\pm}} \gtrsim m_{\tilde{\chi}^0}$

• $\tilde{\chi}_1^{\pm}$ and χ_1^0 are experimantaly indistinguishable.

Mass spectrum

 $\tan\beta = 10, \mu > 0$

gaugino mass:
$$M_a = \frac{\beta_{g_a}}{g_a} m_{3/2} \longrightarrow |M_3| \gg |M_1| \gg |M_2|$$

• $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \chi_1^0$, but π^{\pm} is extremely soft. wino LSP $m_{\tilde{\chi}^{\pm}} \gtrsim m_{\tilde{\chi}^0}$

• $\tilde{\chi}_1^{\pm}$ and χ_1^0 are experimantaly indistinguishable.

mAMSB:

CMSSM:

Associated wino production

• Because of a larger hierarchy between gluino and LSP and larger wino gauge coupling, associated wino production is not negligible.

• It slightly enhances 2, 3-jet events.

jet pt, Etmiss, meff

• Distributions of jet P_T , ETmiss, meff are similar to ones in the CMSSM.

Constraint on mAMSB

- $m_{3/2} > 30 \,\mathrm{TeV}$ if $m_0 < 1.3 \,\mathrm{TeV}$
- $m_{3/2} > 40 \,\mathrm{TeV}$ if $m_0 < 500 \,\mathrm{GeV}$

B.C.Allanach, T.J.Khoo, KS 1110.1119

• Naturalness

 $O((10^{2}\text{GeV})^{2}) \quad 2\lambda v^{2} = m_{H}^{2}(v)$ $= m_{H}^{2}(\Lambda) + \Delta m_{H}^{2}$ $\sim m_{SUSY}^{2}$ $O((10^{2}\text{eV})^{2})$

• Naturalness

 $\lambda = \frac{g^2 + g'^2}{8}$ $-m_H^2 \simeq |\mu|^2 + m_{H_u}^2$

O((10²GeV)²) $2\lambda v^2 = m_H^2(v)$ = $m_H^2(\Lambda) + \Delta m_H^2$ $\sim m_{SUSY}^2$ O((10²eV)²)

• Naturalness

$$\frac{m_Z^2}{2} = m_H^2(v)$$
$$= m_H^2(\Lambda) + \Delta m_H^2$$
$$\sim m_{SUSY}^2$$
$$O((10^2 \text{eV})^2)$$

$$\lambda = \frac{g^2 + g'^2}{8}$$
$$-m_H^2 \simeq |\mu|^2 + m_{H_u}^2$$

• Naturalness

$$\frac{m_Z^2}{2} \simeq -(|\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2)$$

$$\simeq -|\mu|^2 - 0.6m_{H_u}^2(\Lambda) + 3.0M_3^2(\Lambda) + 0.8m_{\tilde{t}}^2(\Lambda) - 0.4A_t(\Lambda)M_3(\Lambda) + \cdots$$

• Naturalness

$$\frac{m_Z^2}{2} \simeq -(|\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2)$$

$$\simeq -|\mu|^2 - 0.6m_{H_u}^2(\Lambda) + 3.0M_3^2(\Lambda) + 0.8m_{\tilde{t}}^2(\Lambda) - 0.4A_t(\Lambda)M_3(\Lambda) + \cdots$$

• $M_3, m_{\tilde{t}}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

• Naturalness

$$\frac{m_Z^2}{2} \simeq -(|\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2)$$

$$\simeq -|\mu|^2 - 0.6m_{H_u}^2(\Lambda) + 3.0M_3^2(\Lambda) + 0.8m_{\tilde{t}}^2(\Lambda) - 0.4A_t(\Lambda)M_3(\Lambda) + \cdots$$

• $M_3, m_{\tilde{t}}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

GUT $\longrightarrow m_{1/2}, m_{10_3}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

• Naturalness

$$\frac{m_Z^2}{2} \simeq -(|\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2)$$

$$\simeq -|\mu|^2 - 0.6m_{H_u}^2(\Lambda) + 3.0M_3^2(\Lambda) + 0.8m_{\tilde{t}}^2(\Lambda) - 0.4A_t(\Lambda)M_3(\Lambda) + \cdots$$

• $M_3, m_{\tilde{t}}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

GUT $m_{1/2}, m_{10_3}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

• a phenomenological model

$$m_0 \equiv m_{\mathbf{10}_{1,2}} = m_{\overline{\mathbf{5}}_{1,2,3}}$$

$$m_3 \equiv m_{10_3} = m_{H_u} = m_{H_d}$$
 $A_0, \ \tan\beta, \ \operatorname{sign}(\mu)$

$$m_{1/2}$$

• Naturalness

$$\frac{m_Z^2}{2} \simeq -(|\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2)$$

$$\simeq -|\mu|^2 - 0.6m_{H_u}^2(\Lambda) + 3.0M_3^2(\Lambda) + 0.8m_{\tilde{t}}^2(\Lambda) - 0.4A_t(\Lambda)M_3(\Lambda) + \cdots$$

• $M_3, m_{\tilde{t}}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

GUT $m_{1/2}, m_{10_3}, m_{H_u}$ should be $\mathcal{O}(100)$ GeV.

• a phenomenological model

less sensitive to
naturalness $m_0 \equiv m_{10_{1,2}} = m_{\overline{5}_{1,2,3}} \simeq 1.5 \text{ TeV}$ sensitive to
naturalness $m_3 \equiv m_{10_3} = m_{H_u} = m_{H_d}$ $A_0, \tan \beta, \operatorname{sign}(\mu)$ $m_{1/2}$ $m_{1/2} \simeq \mathcal{O}(100) \operatorname{GeV}$

Viable parameter region

- Softsusy is used.
- Small stop masses are reconciled with the Higgs mass bound by large A_0 .

KS, K.Takayama 1106.3794

ATLAS 0-lepton analysis 165/pb

Exclusion p-value

No 95% exclusion region

Exclusion p-value

• No 95% exclusion region

Exclusion p-value

• No 95% exclusion region

• The constraint from the 0-lepton analysis is very weak.

• The constraint from the 0-lepton analysis is very weak.

• Small cross section compared to the CMSSM. $\sigma(sq-sq)$, $\sigma(sq-gl)$ are suppressed by the heavy squark mass. $\sigma(gl-gl)$ cannot be large at 7 TeV because of small gluon, anti-quark components in PDF with large energy fraction.

• The constraint from the 0-lepton analysis is very weak.

• Small cross section compared to the CMSSM. $\sigma(sq-sq)$, $\sigma(sq-gl)$ are suppressed by the heavy squark mass. $\sigma(gl-gl)$ cannot be large at 7 TeV because of small gluon, anti-quark components in PDF with large energy fraction.

• Gluino typically decays to 7 particles. The gluino mass energy is divided by 7 particles and each jet cannot be hard. \rightarrow fail to pass the high pT cut

E_{Tmiss}, highest p_T, m_{eff}

• The constraint from the 0-lepton analysis is very weak.

• Small cross section compared to the CMSSM. $\sigma(sq-sq)$, $\sigma(sq-gl)$ are suppressed by the heavy squark mass. $\sigma(gl-gl)$ cannot be large at 7 TeV because of small gluon, anti-quark components in PDF with large energy fraction.

• Typically gluino decays to 7 particles in the final state. The gluino mass energy is divided by 7 particles and each jet cannot be hard. \rightarrow fail to pass the high pT cut

• Large p_T, E_T^{miss}, meff cuts are not good strategies to exclude/discover this scenario.

ATLAS b-jet analysis 35/pb

ATLAS 1103.4344

	Signal Region	0-lepton	1-lepton
	number of b-jets	≥ 1	≥ 1
• 0-lepton: designed for $\tilde{q} \to b \tilde{b}_1^*$	E_T^{miss} [GeV]	> 100	> 80
	Leading jet p_T [GeV]	> 120	> 60
• 1-lepton: designed for $\tilde{g} \to t\tilde{t}_1^*$	Second jet p_T [GeV]	> 30	> 30
	Third jet p_T [GeV]	> 30	-
	$\Delta \phi({ m jet}, E_T^{ m miss})_{ m min}$	> 0.4	> 0.4
	$E_T^{ m miss}/m_{ m eff}$	> 0.2	-
	$m_{\rm eff} [{ m GeV}]$	> 600	> 500
	$m_T \; [\text{GeV}]$	-	> 100
	SM Background	19.6 ± 6.9	14.7 ± 3.7
	Observed Events	15	9

solid: our calculation, dashed: ATLAS

ATLAS b-jet 35/pb result

ATLAS b-jet 35/pb result

ATLAS b-jet 35/pb result

- Constraints are weak.
- There exists allowed region where m1/2 < 200GeV and m3 < 400GeV.
- In the light 3rd generation scenario, naturalness can be realised under the recent LHC constraints.

ATLAS b-jet I-lepton I/fb

ATLAS-CONF-2011-130

E₆ with SU(2) flavour model

• Why $m_3 \neq m_0$?

 ${\bf 27} = {\bf 16}[{\bf 10} + {\bf \overline{5}} + {\bf 1}] + {\bf 10}[{\bf 5} + {\bf \overline{5}}'] + {\bf 1}'$

E₆ with SU(2) flavour model N. Maekawa 0212141[hep-ph]

• Why $m_3 \neq m_0$?

 $\mathbf{27} = \mathbf{16}[\mathbf{10} + \mathbf{\overline{5}} + \mathbf{1}] + \mathbf{10}[\mathbf{5} + \mathbf{\overline{5}}'] + \mathbf{1}'$

E₆ with SU(2) flavour model N. Maekawa 0212141[hep-ph]

• Why $m_3 \neq m_0$?

 $\mathbf{27} = \mathbf{16}[\mathbf{10} + \mathbf{\overline{5}} + \mathbf{1}] + \mathbf{10}[\mathbf{5} + \mathbf{\overline{5}}'] + \mathbf{1}'$

$$W = Y_{33}\Psi_3\Psi_3\Psi_H$$

 $W = Y_{33}\Psi_3\Psi_3\Psi_H + Y_{ab}\Psi_a\Psi_b\Psi_H$

$\begin{array}{ll} & E_6 \text{ with SU(2) flavour model} & \begin{array}{c} \text{N. Maekawa} \\ 0212141[\text{hep-ph}] \end{array} \\ & \bullet \text{ Why m}_3 \neq m_0 \end{array} \\ & 27 = 16[10 + \overline{5} + 1] + 10[5 + \overline{5}'] + 1' \end{array}$

$$W = Y_{33}\Psi_{3}\Psi_{3}\Psi_{H} + Y_{ab}\Psi_{a}\Psi_{b}\Psi_{H}$$
$$= Y_{ij}\mathbf{5}_{i}\overline{\mathbf{5}}_{j}\langle\mathbf{1}_{H}\rangle + Y_{ij}\mathbf{5}_{i}\overline{\mathbf{5}}'_{j}\langle\mathbf{1}'_{H}\rangle$$

$$W = Y_{33}\Psi_{3}\Psi_{3}\Psi_{H} + Y_{ab}\Psi_{a}\Psi_{b}\Psi_{H}$$
$$= Y_{ij}\mathbf{5}_{i}\overline{\mathbf{5}}_{j}\langle\mathbf{1}_{H}\rangle + Y_{ij}\mathbf{5}_{i}\overline{\mathbf{5}}'_{j}\langle\mathbf{1}'_{H}\rangle$$

• Why $m_3 \neq m_0$?

• soft scalar mass

$$V = m_0^2 \widetilde{\Psi}_a^{\dagger} \widetilde{\Psi}_a + m_3^2 \widetilde{\Psi}_3^{\dagger} \widetilde{\Psi}_3$$

• soft scalar mass

$$V = m_0^2 \widetilde{\Psi}_a^{\dagger} \widetilde{\Psi}_a + m_3^2 \widetilde{\Psi}_3^{\dagger} \widetilde{\Psi}_3$$

Summary

- ATLAS and CMS are extending the exclusion limits on the CMSSM.
- Finding constraint on the other SUSY scenario is non-trivial and important task.
- There arises a tension between naturalness and CMSSM.
- A light third generation scenario is interesting because it can accommodate naturalness and the resent LHC results.
- Considering a dedicated set of cuts for the light third generation scenario is important to discover/exclude the scenario.

2-loop RGE

Arkani-Hamed, Murayama '97

As long as m_3 and $m_{1/2}$ are weak scale, m_0 cannot be arbitrarily large.

$$\frac{d}{dt}m_{\tilde{q}_3}^2 \sim -\frac{16}{3}\alpha_3 M_3^2 + \alpha_b m_{\tilde{b}_R}^2 + \frac{16}{3}\frac{\alpha_3^2}{4\pi} \operatorname{Tr}[m_{\tilde{q}}^2 + m_{\tilde{d}_R}^2 + m_{\tilde{u}_R}^2]$$

cannot take large $\tan\beta$

other parameters: $m_{30} = m_{H_u}(\Lambda) = m_{H_d}(\Lambda) = 300 \text{ GeV},$ $A_0 = -600 \text{ GeV}, \tan \beta = 10$

• $m_0 < 1$ - 2.5 TeV depending on m_3 , $m_{1/2}$ and A_0 .

How many SUSY events are allowed? systematic errors prediction for # of events after the cut: $\lambda = \lambda_{SM} + \lambda_{SUSY} \rightarrow \lambda = \lambda_{SM}(1 + \delta_{SM}\sigma_{SM}) + \lambda_{SUSY}(1 + \delta_{SUSY}\sigma_{SUSY})$ provability observing *n* events: $P(n) = \frac{e^{-\lambda}\lambda^n}{n!} \longrightarrow P(n) = \frac{1}{N} \int d\delta_{SM} d\delta_{SUSY} \frac{e^{-\lambda}\lambda^n}{n!} e^{-\frac{1}{2}(\delta_{SM}^2 + \delta_{SUSY}^2)}$ $N = \int d\delta_{SM} d\delta_{SUSY} e^{-\frac{1}{2}(\delta_{SM}^2 + \delta_{SUSY}^2)}$ Incompatibility (p-value): $p_v = \sum P(n)$

conservative p-value:
$$CL_s = \frac{p_v(Signal + BG : [0, n_{obs}])}{p_v(BG : [0, (n_{obs} - 1)])}$$
 (PDG)

• The model is excluded at 95% CL, if it gives CLs < 0.05.

	$\geq 2\mathrm{jets}$	$\geq 3{ m jets}$	$\geq 4 \text{ jets}(a)$	$\geq 4 \text{ jets}(b)$	High mass
95% upper bound on λ_{SUSY}	22	25	429	27	17

CMS α_T I/fb

Compressed spectrum

T.J.LeCompte, S.P.Martin 1105.4304

Compressed spectrum

T.J.LeCompte, S.P.Martin 1105.4304

Lines: m_{gluino} = 300,400,...,1000GeV

Cross section

• $\sigma gg > I pb$, in small $m_{1/2}$ region

• σ stst > 1 pb, in small m_{1/2} and m₃ region

KS, K.Takayama 1106.3794

Gluino decay modes

 $m_3 \; [{
m GeV}]$