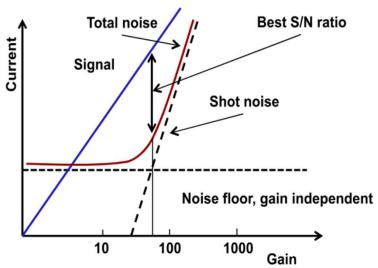
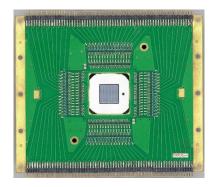

4D Particle Tracking with LGAD Strip Sensors and the DOGMA Readout System

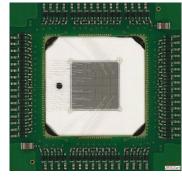

Yevhen Kozymka for the HADES LGAD Team at the 11th annual MT Meeting

Low Gain Avalanche Diode **Detectors (LGADs)**

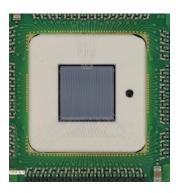
- Thin silicon detectors optimized for timing performance
 - high electric field in gain layer (> 300 kV/cm)
 - intrinsic signal amplification
 - large signals with short rise times (< 1 ns)
- Bulk gain optimization
 - high gain also amplifies noise
 - shot noise rises faster than signal
 - leads to signal fluctuations (jitter)
 - deteriorates timing performance
 - LGADs are operated at relatively low gain (G \approx 10-30)

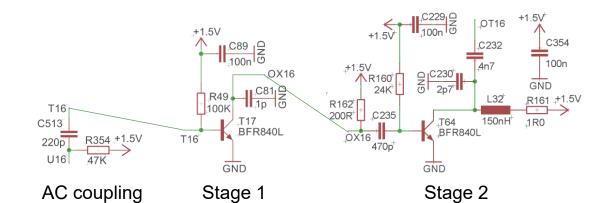


Source: [1]



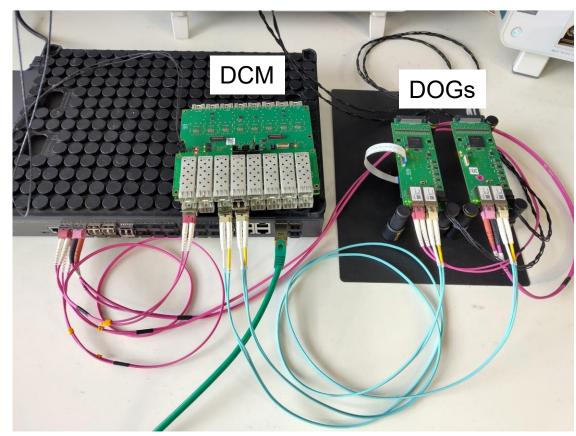
Front-end electronics


- Amplification based strategy
- GSI amplification board for LGAD/diamond
 - 128 channels
 - AC coupled
 - Single- or double-sided readout
 - 60 ps for MIPs
 - < 30 ps for C ions</p>
 - Voltage gain: 400


128-channel readout board

Pad diamond sensor

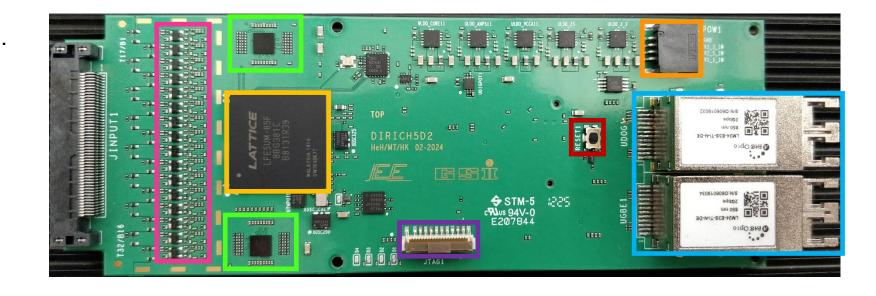
Strip LGAD sensor


DOGMA Readout Framework

- Best effort DAQ paradigm
- Automatic fast reintegration after reboot
 - Higher reliability and fault tolerance
 - Enables use of commercial and cheap FPGAs
- Optical data transmission and < 10 ps RMS clock
 - No GND issues due to galvanic isolation
 - Scaleable
- Arbitrary system size due to no handshake latency
- Ethernet protocol for easy and cheap upgrades
- Keep it Small and Simple
 - Easy to maintain for small teams

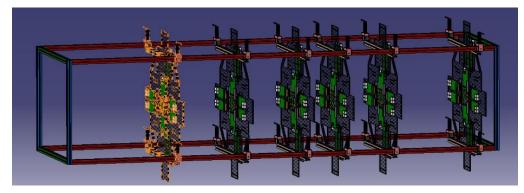
DOGMA Readout Implementation

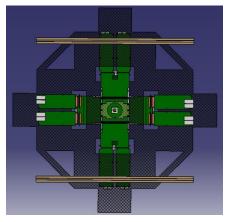
- Dogma Control Module
 - Communication with DOGs
 - Trigger and clock distribution
 - Add-ons for more ports possible
- DiRICH5d2 modules
 - 32 channel readout
- 1 GbE connection to switch
- 10 GbE data to servers
- Switches can be added
- → Used during beam time



Source: [2]

DOGMA Readout Electronics


- Pre-amplifier
- Main FPGA
 - Discriminator, TDC, DAQ, ethernet, slow control, etc.
- Satellite/threshold FPGA
- JTAG connector
- Physical reset button
- Power connector
- SFF optical ports
 - DCM and switch labelled

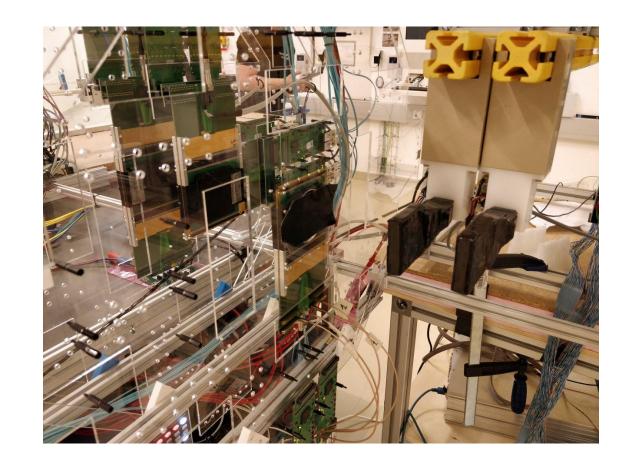


4D Tracking iCT Setup

- → Talk by F. Ulrich-Pur at 12:30
- 2 m long frame to fix modules
- PCBs fixed to plexiglass pane
- 6 layers with 2 X-Y-tracking LGADs each
- 45 channels per LGAD, 540 channels total
- Mouse placed between layers 2 and 3
- 90 cm ToF path between layers 4 and 5

CAD model of setup, distances not adjusted

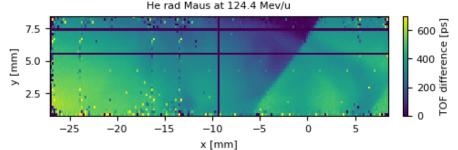
CAD model of one layer

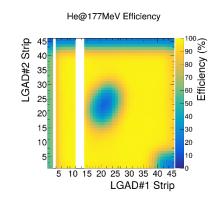

Laser alignment

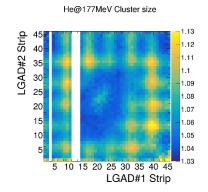
CBM T₀ Performance Study

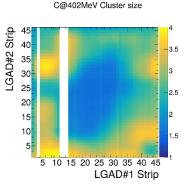
→ Talk by M. Kis / J. Pietraszko tomorrow at 10:30

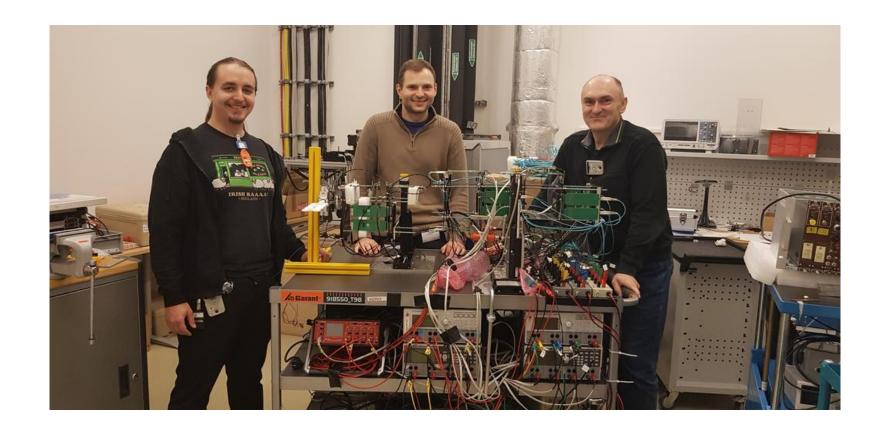
- Diamond layer placed behind iCT setup
- Read-out connected after scope analysis
- Single-sided 6 x 6 pad sensor with aluminium metallization
- Efficiency analysis at different beam energies






4D Setup Performance


- Full analysis chain
 - Time over threshold normalization
 - Time walk correction
 - Cluster identification
- Best timing performance so far
 - 60 ps for 800 MeV protons
- Tomography of sacrificed mouse
 - 4D tracking algorithms currently WIP
- Methods for diamond study developed
- DAQ issues encountered
 - Lower DAQ rate
 - SEU data corruption



Outlook

- Two beam times at MedAustron in Dec./Jan.
 - Live mouse radiography
 - Diamond irradiation level study
- Cold box construction to demonstrate < 50 ps with MIPS
- Setup for laser driven beam at ELI-NP
 - Vacuum operation
 - Shielding concerns
- DOGMA improvements
 - DAQ rate investigation
 - SEU prevention

Thank you for your attention!

References

- 1. Sadrozinski, Hartmut F-W et al. (2017). "4D tracking with ultra-fast silicon detectors". In: Reports on Progress in Physics 81.2, p. 026101. DOI: 10.1088/1361-6633/aa94d3
- 2. The DOGMA DAQ System. dogma.gsi.de
- Ulrich-Pur, F. et al. (2022). "Feasibility study of a proton CT system based on 4D-tracking and residual energy determination via time-of-flight". In: *Physics in Medicine & Biology*. ISSN: 0031-9155, 1361-6560. DOI: 10.1088/1361-6560/ac628b
- 4. Johnson, Robert P (2017). "Review of medical radiography and tomography with proton beams". In: Reports on Progress in Physics 81.1, p. 016701. ISSN: 0034-4885, 1361-6633. DOI: 10.1088/1361-6633/aa8b1d
- 5. Ulrich-Pur, F. et al. (2023). "First experimental time-of-flight-based proton radiography using low gain avalanche diodes". In: *Physics in Medicine & Biology.* DOI: 10.1088/1361-6560/ad3326