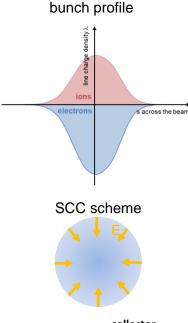


Motivation



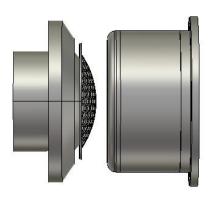
Electron Lens Prototype for Space Charge Compensation (SCC)

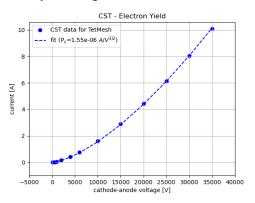

- Space charge represents a major intensity limitation in larger circular accelerators
- R&D to increase the primary beam intensity and thus accelerator efficiency for FAIR operation
- Electron Lens for SCC
 - Counter defocusing self-SC with electrons
 - Modulate e-beam to follow bunch profile
 - Linear compensation
 - Uniform transverse profile
 - linear fields avoiding resonance creation
 - Symmetry typically requires several lenses
- Strategy
 - Design of dedicated e-lens for SIS18
 - Design shall be compatible with SIS100
 - SIS18 e-cooler as test bed for e-gun and collector to demonstrate the concept

Synchrotron	dQ
PS Booster	up to -0.69
PS	up to -0.39
SPS	up to -0.21
AGS Booster	up to -0.3
AGS	up to -0.25
JPARC RCS Booster	up to -0.35
JPARC Main Ring	up to -0.4
ISIS SR	up to -0.4
SNS SR	up to -0.15
Fermilab Booster	up to -0.6
SIS18	up to -0.5
SIS100	up to -0.3 (planned)

courtesy of P. Spiller, Talk, IPAC24, WEBD3

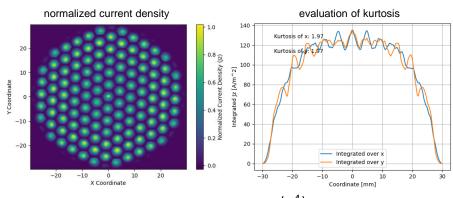
Modulation to match


Design of Modulated Electron Gun FAIR == 1

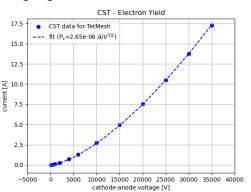


Requirements of design result from the SIS18 cycle:

- 400 kHz to 1 MHz to follow longitudinal bunch profile
 - grid modulation to reduce load, 3 kV on grid
 - two different types of modulation grid
- up to 15 A @ 35 kV for SCC
- modulator design
 - prototype within ARIES WP16
 - technical concept was developed
- transverse, homogeneous beam density profile
 - immersed in solenoidal field of up to 0.4 T
 - despite elliptical cross section of bunch, round cross section was chosen


Electrode design with honey comb grid

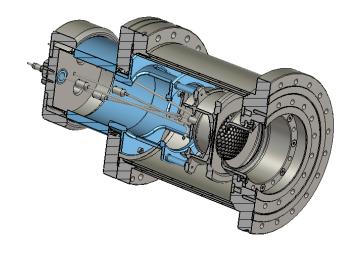
kurtosis: 1.97

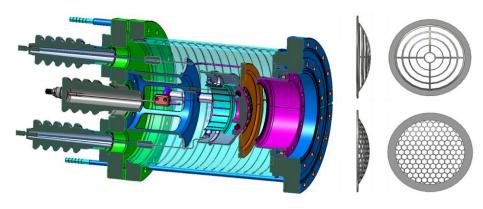

Evaluation of transverse beam density profile

kurtosis: $V_y =$

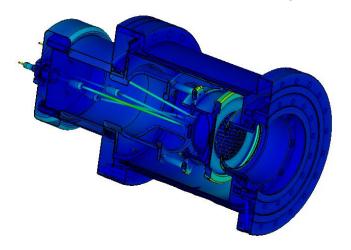
Electrode design with target grid

kurtosis: 1.99


Design of Modulated Electron Gun

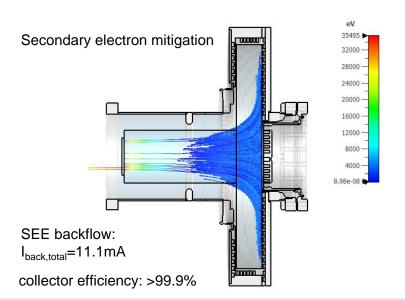

Status of rf-modulated E-Gun:

- Preparation of preliminary e-gun design with two different grids by GSI
 - flexible set-up to exchange grids
 - BaO dispenser cathode 311XM to meet current density requirements 4 A/cm²
- Production contracted in April of this year
- E-gun is currently being redesigned by NTG
- Expected delivery in May 2026
- Commissioning at GSI test stand

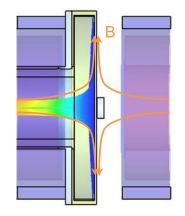

E-gun layout by NTG (current status)

E-gun design by GSI

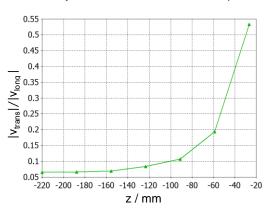
Evaluation of dielectric strength



Design of Low Loss Collector



Design Challenges:


- collector is operated on a HV platform and has bias potential \(\Delta U \) with respect to cathode to reduce power loss
- beam potential increases by deceleration
 - leads to reflection of beam for low ∆U between e-gun and collector
 - ΔU=10 kV required for conventional design
- magnetic cusp field helps to rapidly expand beam
 - reduce beam potential
 - distribute beam over large area
 - reduction of power deposition by ~50%

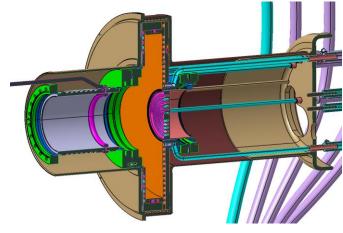
Collector integrated into cusp field

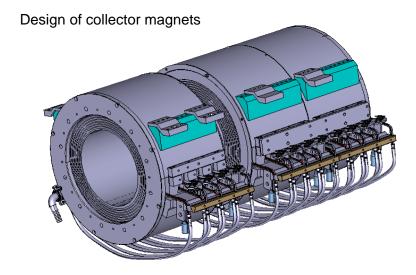
Velocity ratio of electrons in cusp field

Peak power deposition

E-lens is only used in the beginning of the SIS18 cycle, this reduced the power deposition by ~0.3.

Design of Low Loss Collector

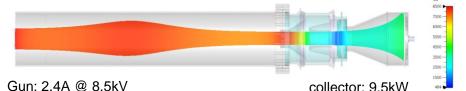


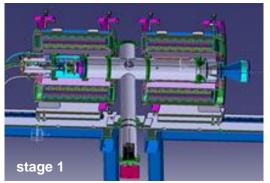

Technical Challenges:

- chamber must have a small height compared to the diameter
- separate cooling channels are required to allow deducing beam power distribution from the temperature of the water backflow
- requires the use of advanced manufacturing methods

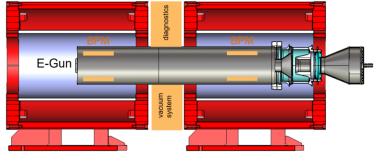
Collector Parameters			
Electron current max.	15	Α	
Collector bias potential max. (represents max. electron energy)	-5.5	kV	
Beam modulation frequency	400 – 1000	kHz	
Inner collector radius max.	215	mm	
Outer collector radius	242	mm	
Beam radius	≥ 215	mm	
DC power deposition	82.5	kW	
Power deposition within cycle, max.	20	kW	
Collector area	1452	cm ²	
Max. magnetic field	0.4	T	
Collector chamber height	66	mm	

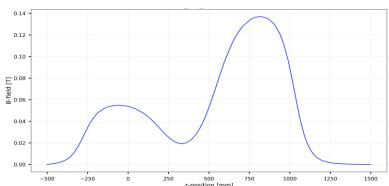
Design of collector chamber


Test Bench at GSI

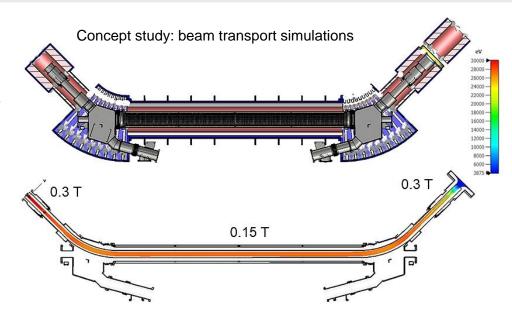


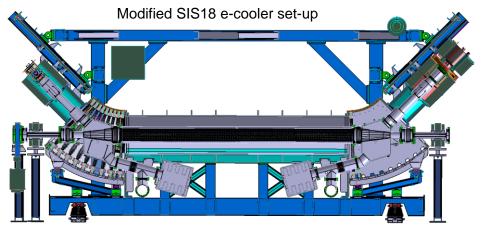
Test bench set-up:


- commissioning of e-gun and collector
 - demonstration of extraction currents up to 15 A and beam profile
- reusage of equipment as power supplies, vacuum pumps and solenoids from 100 keV COSY e-cooler @ FZ Jülich
- used in different stages according to the experimental requirements
 - stage 1
 - existing collector with power depostion up to 10 kW and smaller aperture compared to beam diameter
 - preparation of transverse and longitudinal beam diagnostics
 - stage 2
 - commsioning of low loss collector
 - characterization of e-beam and operation modii


Electron beam trajectories

SIS18 E-Cooler as Test Bed




Modification of SIS18 E-Cooler:

- E-Cooler is in Sector 10 of SIS18
- Electron cooler has a maximum B-field of 0.15 T in the interaction section and 0.4 T in the gun and collector branches
- simulations indicate that cooler field magnitude is feasible for demonstration experiments
- The design of the electron gun and collector has been adapted so that it can be integrated into the cooler.
 - An additional solenoid is provided to adjust the collector system to the length of the beam tube.
- next step: planning of demonstration experiments with "single lens"

SIS18 e-cooler

Outlook

- Preparation of demonstration experiments
- Set-up of test bench at GSI
- Commissioning of rf-modulated e-gun
- Construction of low loss collector
- Modification of SIS18 e-cooler and machine experiments
- Design of demonstrator electron lens is under preparation in parallel

Thanks for your attention!

Special thanks to all contributors to this project:

M. Droba², M. Kirk¹, O. Meusel², D. Ondreka¹, J. Rausch², P. Rottländer¹, P. Spiller¹, K. Thoma^{1,2}

¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, ²Goethe-University Frankfurt