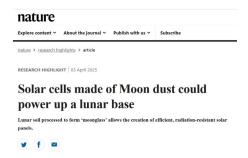
A. Denker, J. Bundesmann, T. Damerow, M. Dayyani Kelisani, A. Dittwald, T. Fanselow, I. Ja, I. Kailouh, M. Kang, G. Kourkafas, S. Ozierenski, R. Pena Freitas Mendes, C. Zimmer

D. Cordini, J. Heufelder, S. Seidel, R. Stark, A. Weber

Students of the BHT

G. Dollinger, M. Mayerhofer, J. Neubauer, J. Reindl, A. Rousseti

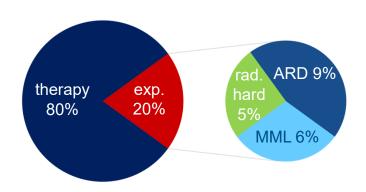
development in proton therapy: FLASH and minibeams at the HZB cyclotron



Proton Accelerator: Beam Time Distribution

- main use of accelerator: therapy of ocular tumours in collaboration with CHARITÉ university hospital Berlin
- accelerator research and development (ARD)
- life sciences (*MML*)
- radiation hardness tests on electronics and solar cells for space (link to research field *energy*)
- example: Perovskite/Perovskite Tandem cells extra-ordinarily stable
- research highlight by nature

(2025) 10.1038/d41586-025-00971-x

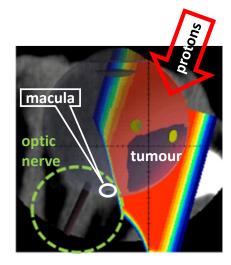


Adv. Energy Materials (2021) 10.1002/aenm.202102246

Springer, Energy harvesting and Storage (2022) 10.1007/978-981-19-4526-7

RSC Adv. (2023) 10.1039/D3RA03846G

Device (2025) 10.1016/j.device.2025.100747 (2025)



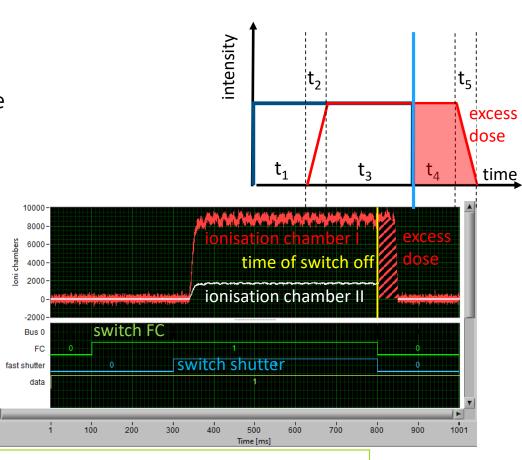
Proton Therapy of Ocular Tumours: Status

- HZB cyclotron: proton energy of 68 MeV, ideal for ocular treatments (~ 25 mm diameter)
- extremely sharp distal dose fall-off (90% to 10%) < 1 mm

 → better reduction of side effects (loss of vision) in contrast to high-energy cyclotrons
- sufficient beam current, treatment time < 1 minute/fraction
- > 25 years successful treatment in collaboration with CHARITÉ
- local tumour control: 96% eye retention rate: 95% → one of the world leading centres in ocular proton therapy
- successful interdisciplinarity: ophthalmologists, radiation oncologists, medical physicists, accelerator physicists, and engineers

> 5000 patients @ HZB = 10% of worldwide proton treated eye tumours

Aspiration: Maintain Tumour Control – Reduce Side Effects


Theme	Requirement	Challenge	
FLASH:	extremely high dose rates of > 40 Gy/s applied in short times (< 0.5 s)		
GY	high dose rates = high beam intensities short delivery times	saturation effects in beam monitors short reaction times on electronics and interlocks	
Minibeams: spatial fractionated beams			
	beam spots < 0.5 mm	positioning and dose precision	
beams:	eams: sharper lateral dose fall-off, higher Linear Energy Transfer (LET)		
	broad He-beam with adequate dosimetry	radiobiological effectivity has to be investigated	
ARD:	ARD: beam delivery, dosimetry, beam diagnostics		
	high beam intensities excellent energy spread	this combination: rare	

research driven by users, ARD contributes to MALI

FLASH: Beam Delivery – Control System

- ideal: instant opening and closing of the beam shutter without any delays
 - ⇒ instantaneous, rectangular intensity (dose rate) curve
- reality: delays and opening/closing times
- required precision for dose application: ± 1.5%
- 10 kHz feedforward control of dose delivery using FPGA + LabVIEW compensates excess dose

reproducibility meets clinical specifications

Proc. ICALEPS (2023) 10.18429/JACoW-ICALEPCS2023-MO3BCO07

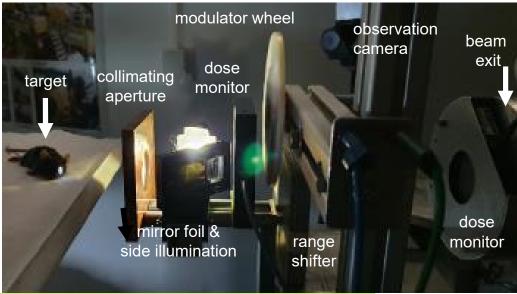
FLASH: First Results

• compact nozzle for a flat 6 mm irradiation field and 5 mm <u>spread-out Bragg peak</u> within clinical specs (**no shoot through**)

• irradiation of **single** mice eyes

mode switching in 30 min – radiation properties unaffected

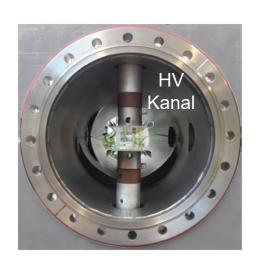
• conventional: 0.25 Gy/s: 15 Gy in 60 s

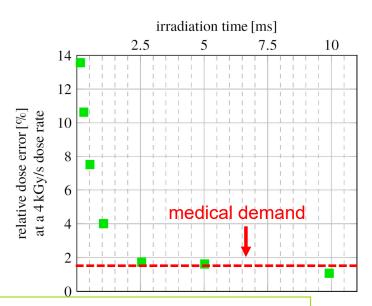

• FLASH: 75 Gy/s: 15 Gy in 0.2 s

Medical Physics (2021) doi:10.1002/mp.14730 Cells (2025) doi:10.3390/cells14040298

WILEY
Top Downloaded Article

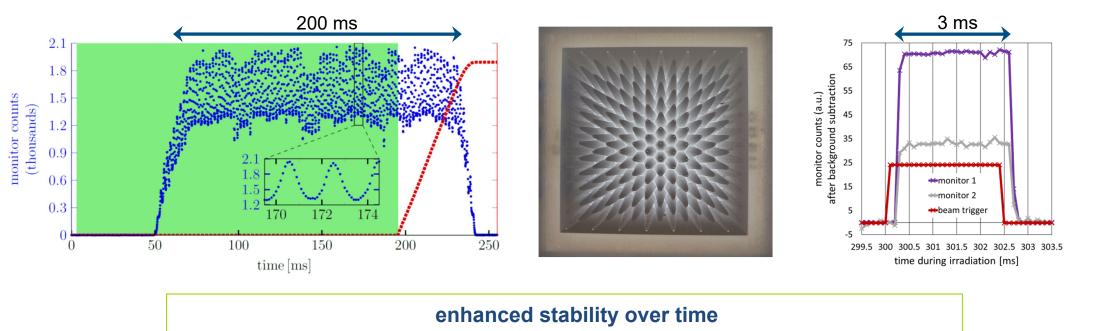
world-wide first FLASH irradiation of eyes





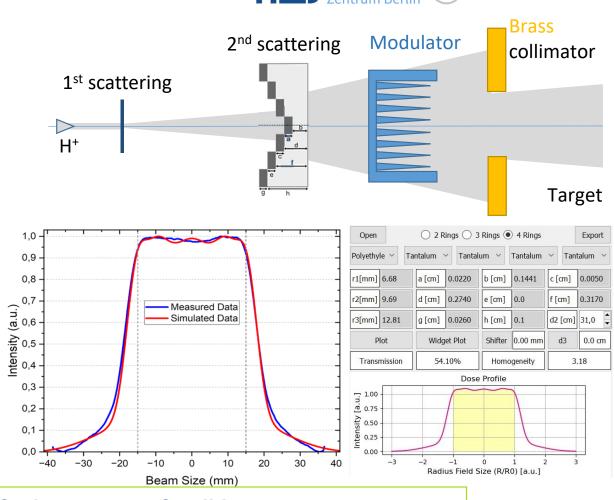
FLASH: Upgrade – Faster Beam Switching

- first FLASH experiments: t_{irr} = 200 ms (scissor-like mechanical shutter: 10 ms for beam-on, 5 ms for beam-off)
- design and installation of electrical shutter for both injectors: 0.3 ms for beam-on, 0.4 ms for beam-off
- now: 10 ms pulses with dose-delivery precision of better than 1.5% possible



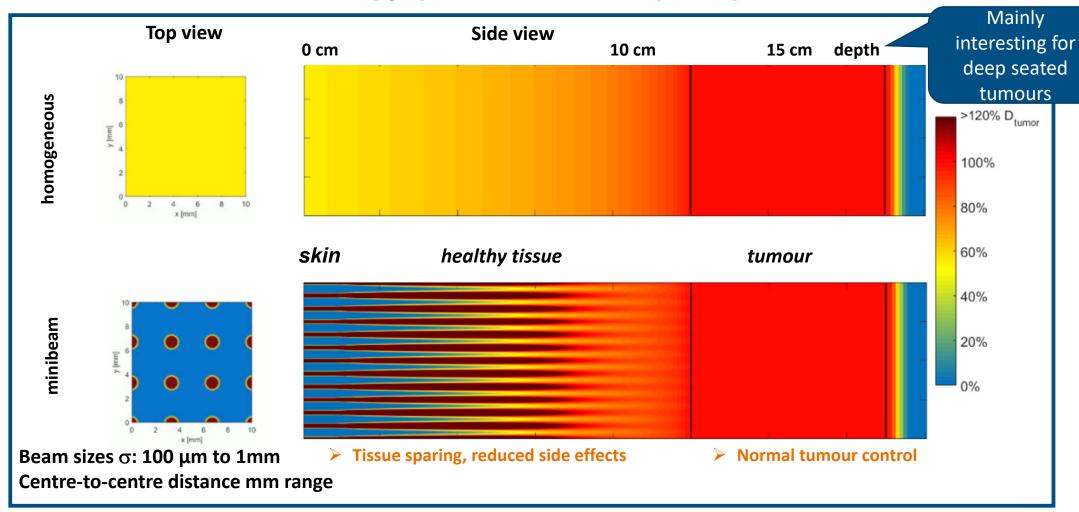
decrease FLASH time by factor 20 while maintaining clinical specifications

FLASH: Upgrade – Accuracy


- use of modulator wheel = dose changes over time, no problem for "long" irradiations
- replace by 3D-printed ridge filter ⇒ flat curve over short times

HZB Helmholtz Zentrum Berlin CHARITÉ

FLASH: Upgrade – Nozzle ⇒ Intensity

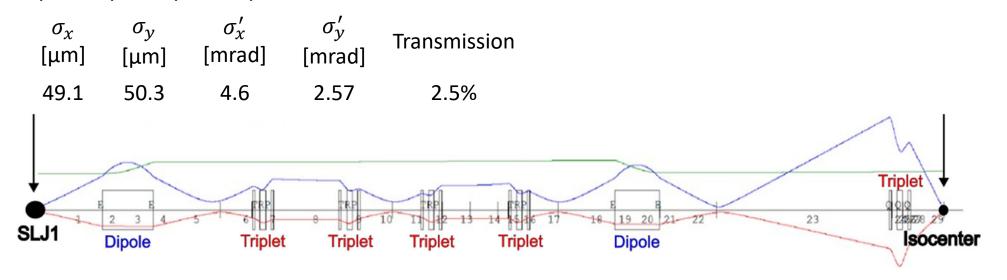

- Python GUI **optimizer** for calculating dual-scattering nozzles with up to 4 rings:
- irradiation field: 30 mm
 beam transmission: increased from 10%
 ⇒ 54% in the homogenous field-part

FLASH for human eyes feasible

Proton Minibeam Radiotherapy (pMBRT) - the concept of spatial fractionation

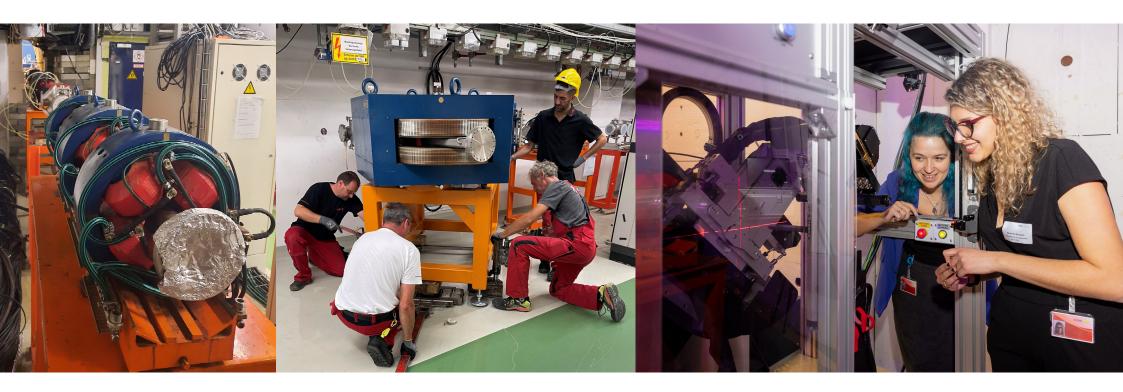
Slide by Prof. Dr. Judith Reindl

judith.reindl@unibw.de



Spatial Fractionation MINIBEE

- installation of a Small Animal Radiation Research Platform (SARRP) at dedicated beamline, project funded by federal ministry of defence: 3.5 M€
- beam line simulations performed with Codes: Trace3D + Georges Python library // BDSIM (Geant4)
- no special quadrupole required for minibeams at isocentre:


unique: Small Animal Radiation Research Platform with minibeam

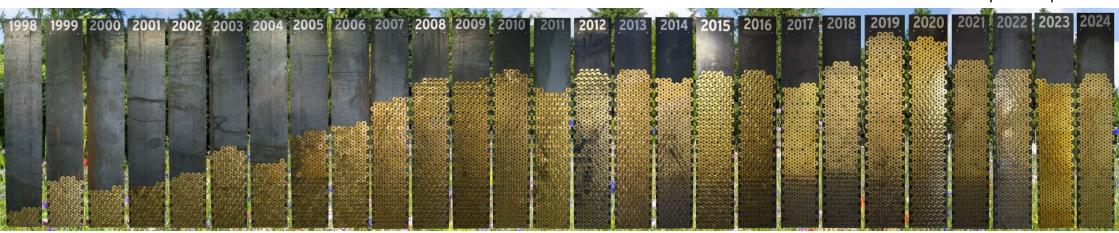
- open wall to cyclotron vault and install radiation monitors ✓
- install new beam-line and install SARRP
- in progress: commissioning and control system
- to do: licensing

Future: Need for New Ideas

- challenges:
 - aging accelerator infrastructure
 - maintaining excellent clinical standard and accompanying research
- hot research topics further reduction of side effects:
 - potential future: FLASH Radiotherapy → extremely high beam intensities
 - Helium-ions: sharper lateral dose fall-off, higher radiobiological efficiency
- = <u>impossible</u> at standard commercial proton therapy accelerators

- ~ same range in water, ideal for eyes
- ~ same magnetic rigidity

commercial solution not available ⇒ develop new design



Summary

- more than 5000 eye patients conventionally treated in collaboration with Charité Universitätsmedizin Berlin
- user operation & research:
 - MiniBEE project with Uni. Bundeswehr München in full thrust, experiments in 2026
 - FLASH delivery of kGy/s down to few ms irradiation-time within clinical specs
 - plans for clinical FLASH application to human eyes (organoids, iris melanoma, patients)
 - phase I CDR for compact cyclotron with scientific case finished

Thank you for your attention

patient apertures

