mR=DR DRESDEN N -_DR
HELMHOLTZAI AI Lab \2 concept ‘ HELMHOLTZ ZENTRUM

DRESDEN ROSSENDORF

Foundational Models in physics and its neighborhood

, Steve Schmerler

Helmholtz-Zentrum Dresden-Rossendorf, Department for Information Services and Computing,

MT Annual Meeting 2025, November 3, 2025



mailto:p.steinbach@hzdr.de

.Table of Contents

= ~ e
2/21 FMs in Physics - 2025-11-03 HELMHOLTZA| A fapl” " L) MM



.Table of Contents

1 A Large Language Model

3/21 FMs in Physics + 2025-11-03



“ Some recent history: BERT

® name:
Bidirectional
Encoder
s " " Sorvesse Representations from
G- Gl (] Transformers

BERT
Ele]- EEE- &
EE- EIEE- &

G-

T

Masked Sentence A Masked Sentence B Question Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Figure 1 from [Devlin et al., 2018]

o ~ e —
4/21 FMs in Physics - 2025-11-03 HELMHOLTZA| aitapt” "t ) medm



“ Some recent history: BERT

® name:

Bidirectional
Encoder

s = " S Representations from

CIC]- - ) Transformers

BERT BERT m task:
[all&]. [&llEmlle].- [E&] (e |l ] . string sequence to sequence
m . m 5 _ translatlon
Masked Sentence A Masked Sentence B QUSLIIM‘\ Palalgla ph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Figure 1 from [Devlin et al., 2018]

o ~ e —
4/21 FMs in Physics - 2025-11-03 HELMHOLTZA| aitapt” "t ) medm



“ Some recent history: BERT

® name:
Bidirectional
Encoder
NSP Mask LM Mask LM artEnd an H
= i+ s Representations from
Cl). =) () Transformers
BERT BERT m task:
[ea]l= ] (B [E=lle] - [&] [l CE]CE=ll=]. string sequence to sequence
(60 BArEmE- 60 EE . G- translation
T I .
Masked Sentence A Masked Sentence B Question Paragraph u d ata °
R (unlabelled) text pairs
Pre-training Fine-Tuning

Figure 1 from [Devlin et al., 2018]

szom e ~ e —
4/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: BERT

NSP MaskLM Mask LM
*

®x

. D). ©
BERT

Ele]- EEE- &

EE- EIEE- &

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

Pre-training

Start/End Span
BERT
I

T
Question Paragraph

Question Answer Pair

Fine-Tuning

Figure 1 from [Devlin et al., 2018]

4/21 FMs in Physics - 2025-11-03

name:
Bidirectional

Encoder
Representations from
Transformers

task:
string sequence to sequence
translation

data:
(unlabelled) text pairs

breakthrough:

HELMHOLTZA! o (20> "5 ™) Mz DR



“ Some recent history: BERT

NSP MaskLM Mask LM
*

®x

. D). ©
BERT

Ele]- EEE- &

EE- EIEE- &

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

Pre-training

Start/End Span
BERT
I

T
Question Paragraph

Question Answer Pair

Fine-Tuning

Figure 1 from [Devlin et al., 2018]

4/21 FMs in Physics - 2025-11-03

name:
Bidirectional

Encoder
Representations from
Transformers

task:
string sequence to sequence
translation

data:
(unlabelled) text pairs

breakthrough:
train once

HELMHOLTZA! o (20> "5 ™) Mz DR



“ Some recent history: BERT

NSP MaskLM Mask LM
*

®x

o). Cal). &
BERT

). EEE- &

(G- Eae=E- G

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

Pre-training

Start/End Span
BERT
T I

Question Paragraph

Question Answer Pair

Fine-Tuning

Figure 1 from [Devlin et al., 2018]

4/21 FMs in Physics - 2025-11-03

name:
Bidirectional
Encoder
Representations from
Transformers
task:
string sequence to sequence
translation
data:
(unlabelled) text pairs
breakthrough:
train once
finetune and use on
many unrelated tasks
(MNLI, NER, SQuAD, ...)

HELMHOLTZA! o (20> "5 ™) Mz DR



“ Some recent history: GPT-1

E name:
Generative Pretrained Transformer

T T e =
naiment [“Sun | Premise | ouim _ rypotness | e |-

[[sen [ Text1 [oeim  Textz | eaac [l——{

L
+)> Linear
[(san [ Textz [ odim  Text1 | exact [l-{ }5)

Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..{ [ Linear

[sn [ Context | poim _ AnswerN IEmam[H
Figure 1 from [Radford, Narasimhan, et al., 2018]

similarity

[(stat | context [ pelim  Answer1 | Exvact U—-{

szom e ~ e —
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: GPT-1

E name:
Generative Pretrained Transformer

T T e =
naiment [“Sun | Premise | ouim _ rypotness | e |-

m task:
sequence to sequence decoding

[[sen [ Text1 [oeim  Textz | eaac [l——{ =

+)>_Linear
[(san [ Textz [ odim  Text1 | exact [I-{

[(stat | context [ pelim  Answer1 | Exvact U—-{

Similarity

Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1

[sn [ Context | poim _ AnswerN IEmam[H
Figure 1 from [Radford, Narasimhan, et al., 2018]

azam s ~ o e—
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA| aitanl? ‘e L FMeM



“ Some recent history: GPT-1

E name:
Generative Pretrained Transformer

Text Task " » 1
Cusstcaon (BT -

m task:
naiment [“Sun | Premise | ouim _ rypotness | e |- sequence to sequence decoding
sy [[sen [ Text1 [oeim  Textz | eaac [l——{ E{;‘» — M data
120 [(san [ Textz [ odim  Text1 | exact U—-{ heaps of text (WWW)
[(stat | context [ pelim  Answer1 | Exvact U—-{
Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1

[sn [ Context | poim _ AnswerN |Emanﬂ..{
Figure 1 from [Radford, Narasimhan, et al., 2018]

azam s ~ o e—
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA| aitanl? ‘e L FMeM



“ Some recent history: GPT-1

m name:
Generative Pretrained Transformer

Text Task " - J
R W =
naiment [“Sun | Premise | ouim _ rypotness | e |-

m task:
sequence to sequence decoding

[(sen [ Text1 | Delfm Textz | Exiact [l——{ E{;‘» — M data
[(san [ Textz [ poim  Text1 |smuﬂ-{ heaps Of text (WWW)

[(stat | context [ pelim  Answer1 | Exvact U—-{

Similarity

m breakthrough:

Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1

[sn [ Context | poim _ AnswerN |Emanﬂ..{
Figure 1 from [Radford, Narasimhan, et al., 2018]

szom e ~ e —
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: GPT-1

m name:
Generative Pretrained Transformer

Text Task " » 1
Cusstcaon (BT -

m task:
naiment [“Sun | Premise | ouim _ rypotness | e |- sequence to sequence decoding
sy [[sen [ Text1 [oeim  Textz | eaac [l——{ E{;‘» — M dat a:
120 [(san [ Textz [ odim  Text1 | exact U—-{ heaps of text (WWW)
[(stat | context [ pelim  Answer1 | Exvact U—-{ ™ brea kthrough:
Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1

scalable

[sn [ Context | poim _ AnswerN |Emanﬂ..{
Figure 1 from [Radford, Narasimhan, et al., 2018]

szom e ~ e —
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: GPT-1

m name:
Generative Pretrained Transformer

Text Task " » 1
Cusstcaon (BT -

m task:
naiment [“Sun | Premise | ouim _ rypotness | e |- sequence to sequence decoding

[[sen [ Text1 [oeim  Textz | eaac [l——{

Similarity

Eﬁ* — m data:
heaps of text (www)

[(san [ Textz [ odim  Text1 | exact [I-{

[(stat | context [ pelim  Answer1 | Exvact U—-{

Linear

m breakthrough:
Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1 o[ Linear | scalable

[ T comen [ o _osver [ e ]| better quality than BERT
Figure 1 from [Radford, Narasimhan, et al., 2018] [Radford, Wu, et al., 2019]

szom e ~ e —
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: GPT-1

m name:
Generative Pretrained Transformer

Text Task " » 1
Cusstcaon (BT -

m task:
naiment [“Sun | Premise | ouim _ rypotness | e |- sequence to sequence decoding
—_— [[sen [ Text1 [oeim  Textz | eaac [l——{ Et\» — m data:
120 [(son [ Texz | poim _ Text1 |Emacxﬂ-{ heaps of text (WWW)

[(stat | context [ pelim  Answer1 | Exvact U—-{

Linear

m breakthrough:
Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1 o[ Linear | scalable

W [sn [ Context | bolim  Answer N | Exact | i .
[ roamen] H better quality than BERT

Figure 1 from [Radford, Narasimhan, et al., 2018] [Radford, Wu, et al., 2019]
science behind closed doors

szom e ~ e —
5/21 FMs in Physics - 2025-11-03 HELMHOLTZA! Aitanl? bl ) medm



“ Some recent history: GPT-1

Classification [ st | Text | Exwact ] " Linear
v -
naiment [“Sun | Premise | ouim _ rypotness | e |-

[[sen [ Text1 [oeim  Textz | eaac [l——{

L
+)> Linear
[(san [ Textz [ odim  Text1 | exact [I-{ }5/

Multiple Choice | Stat | Context | Deim  Answer2 | Exact ”..1 o[ Linear

[sn [ Context | poim _ AnswerN |Emaaﬂ..{
Figure 1 from [Radford, Narasimhan, et al., 2018]

Similarity

[(stat | context [ pelim  Answer1 | Exvact U—-{

5/21 FMs in Physics + 2025-11-03

name:
Generative Pretrained Transformer

task:
sequence to sequence decoding

data:
heaps of text (www)
breakthrough:

scalable

better quality than BERT
[Radford, Wu, et al., 2019]

science behind closed doors

pretraining + finetune

HELMHOLTZA A, i55:2 "0 ™\ Mz DR



“ Scalability? [Hoffmann et al., 2022]
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The bigger, the better!

(bigger models, more compute, more data result in better performance)
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.image—text model: OpenClip
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Computer Science > Machine Learning
[Submitted on 14 Dec 2022 (v1), last revised 13 Jul 2024 (this version, v2)]

Reproducible scaling laws for contrastive language-image learning

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, Jenia
Jitsev

Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of
training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on
scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for
contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models
trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and
end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAl and OpenCLIP models exhibit different scaling behavior despite
identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure
reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at this https URL

github.com/mlfoundations/open_clip [Cherti et al., 2023]
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“ Review Paper in HFMI: Motivation and Methods

m Initiative in Helmholtz Foundational Model Initiative (HFMI)
m diverse set of disciplines (geoscience, life science, physics, materials, ...)

m goal: review literature for successful applications of FMs
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“ Review Paper in HFMI: Motivation and Methods

m Initiative in Helmholtz Foundational Model Initiative (HFMI)
m diverse set of disciplines (geoscience, life science, physics, materials, ...)

m goal: review literature for successful applications of FMs

search candidate papers (google scholar, science OS, consensus
download pdf files (or store URLS)

ingest to notebooklLM

analyse and summarize

manually double check!
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“ Al-Khwarizmi: Discovering Physical Laws with Foundation
Models
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“ FM4NPP: A Scaling Foundation Model for Nuclear and Particle
Physics
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= Poseidon: Efficient Foundation Models for PDEs
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= Main Takeaways

m Machine Learning Methods for Natural Language Processing nurtured idea of
foundational models
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m some parts of physics invest heavily in this (number of papers, assumed person
hours)
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Thank you for your attention!
Feel free to ask questions, provide feedback or comments.
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“ Talk to us!

m helmholtz.ai/you-helmholtz-ai/ai-consulting/
m contact@helmholtz.ai for general questions

m consultant-helmholtz.ai@hzdr.de for questions regarding research field
matter
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