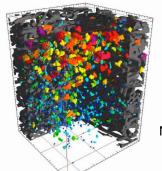
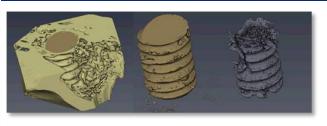
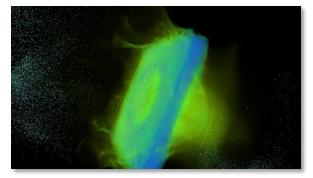

DMA ST 2 — The Digital Scientific Method

M. Al-Turany (GSI)
G. Juckeland. (HZDR)





I. Focus — ST 2 / The Digital Scientific Method



Near real-time **segmentation** of bone implant data by **AI**

Near real-time **segmentation** of battery electrode data by **Al**

Exascale simulations of laser-driven ion acceleration

Develop, apply and share **cutting edge digital methods and frontier technologies** for research in Matter.

- Artificial Intelligence
- Exascale Computing
- High Throughput Computing
- Quantum Computing
- Near real-time analysis

2023: DMA Open Solutions Toolbox

Exascale simulations of high

energy density plasmas

2025: Near real-time capabilities

2027: Surrogate modelling

HELMHOLTZ

2023

• DMA repository of interconnectable, modular software in full operation

2025

 Toolbox for near-realtime data analysis at extreme scales available

2027

• Surrogate models of multi-source, multi-modal experiments

Cooperation with EOSC

2023

• DMA repository of interconnectable, modular software in full operation

02/2019 - 08/2022

A sustainable open-access repository to share scientific software and services to the science community and enable open science

The DMA Repository Implementation

 ESCAPE-OSSR provides a strong curation workflow (https://zenodo.org/communities/escape2020/)

 HIFIS Research Software Directory offers a flexible platform (https://helmholtz.software)

 Current strategy: Combining workflows from both platforms to maximize effectiveness

 RSD + Matter content is "not yet rich" but serves as foundation for Milestone DMA

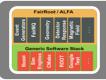
Current Status (2023 Milestone Achieved)

- The DMA repository of interconnectable, modular software is now in full operation.
- The repository provides a directory of software packages with examples covering the whole simulation and experiment life cycle
- Basic requirements established for software inclusion:
 - Mature state following good software engineering practices
 - Publicly available with Open-source license
 - Introductory documentation
 - Proper attribution in AUTHORS and CONTRIBUTORS files

See Onboarding DMA Software to ESCAPE-OSSR Catalogue

M. Al-Turany

https://indico.desy.de/event/33132/contributions/129472/



2023

DMA repository of interconnectable, modular software in full operation

2025

• Toolbox for near-realtime data analysis at extreme scales available

2027

• Surrogate models of multi-source, multi-modal experiments

2023

• DMA repository operation • DMA repository oper

2025

• Toolbox for near-realtime data analysis at extreme scales available

2027

• Surrogate models of multi-source, multi-modal experiments

Challenges

- Content for the repository is "not yet rich" and requires more onboarding
 - Need to identify and approach relevant groups for software contributions

Requires regular meetings for effective onboarding and collaboration

Data-parallel Types for C++

SIMD: efficient, readable, and portable

Date: April 26, 2023

See Using std::cpp 2023 >

Schedule: 9.00 - 18.30 Language: English

SOLD OUT! >

- GCC implementation fully usable and documented on cppreference.com
- Tutorial on std::experimental::simd at "using std::cpp 2023"
- Design approval of std::simd for C++26
- Collaboration with Intel on adding more features to simd in C++26
- CppCon 2023 presentation
- CppCast interview

Data-parallel Types for C++

Workshop SIMD: efficient, readable, and portable

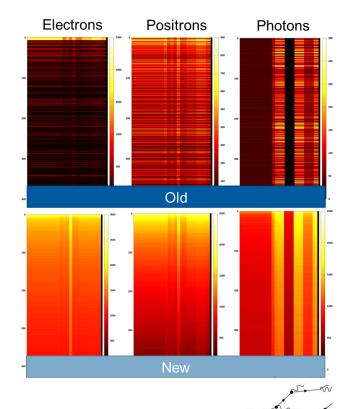
Date: April 26, 2023 Schedule: 9.00 - 18.30 Language: English

- GCC implementation fully usable and documented on cppreference.com
- at "Lation technique yet vectorization technique yet with Intel on a lateral water actives to sit a lateral water yet active yet Tutorial on std::experimental::simd at "
- Design approval of std::simd for C++26
- Collaboration with Intel on
- CppCon 2023
- CppCast intervie

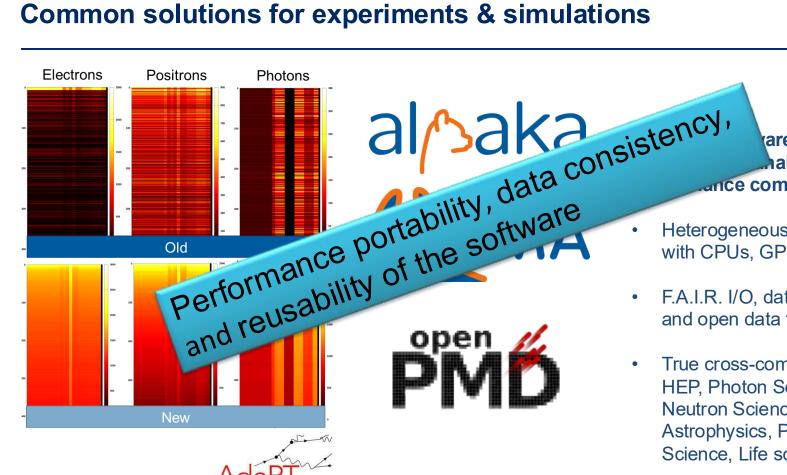
SIMD

Episode 372, published Friday, 15 Dec 2023

Matthias Kretz joins Phil and Timur. Matthias talks about SIMD, including what it is, how it works, and what its useful for. We also discuss his proposal to introduce SIMD vocabulary types and functionality into the C++ standard and how it relates to what was in the Parallelism TS.


This episode sponsored by...

Common solutions for experiments & simulations



Exascale software stack for scalable data analytics & high performance computing

- Heterogeneous computing with CPUs, GPUs, FPGAs
- F.A.I.R. I/O, data streaming and open data formats
- True cross-community use: HEP, Photon Science, Neutron Science, Astrophysics, Plasma Science, Life science

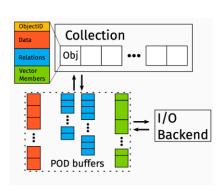
Common solutions for experiments & simulations

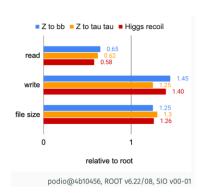
are stack for halytics & high ance computing

- Heterogeneous computing with CPUs, GPUs, FPGAs
- F.A.I.R. I/O, data streaming and open data formats
- True cross-community use: HEP, Photon Science, Neutron Science, Astrophysics, Plasma Science, Life science

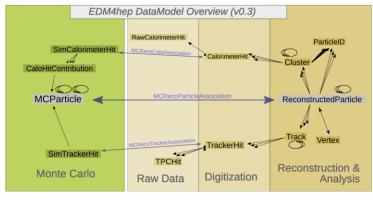
EDM4HEP: AN EVENT DATA MODEL FOR FUTURE COLLIDERS

AIDA innova


- event data models (EDM) are at the core of every HEP event processing framework
 - they define the interface for any algorithm and analysis
- **EDM4hep** aims at providing the EDM for all future collider projects in the context of the **Key4hep** project
 - used by FCC-ee, FCC-hh, ILC, CLICdp, CEPC,...
- developed at DESY (DMA-ST2) and CERN
 - also supported by AIDAinnova


For more details see talk at vCHEP 2021

T.Madlener: EDM4hep and podio - The event data model of the Key4hep project and its implementation


https://indico.cern.ch/event/948465/contributions/4323705

- **EDM4hep** uses the **PODIO** event data model toolkit
- define data entities in yaml files
- autogenerated C++ and Python code (using Jinja)
- data stored as PODs (plain old data objects)
- several backends exist: ROOT, SIO, HDF5 (WIP)
- -> choose what's best for your use case

M. Al-Turany

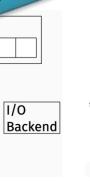
- EDM4hep event data model heavily inspired by LCIO
 - EDM used in the linear collider community for almost 20 years
- modernize the syntax
- improve the performance

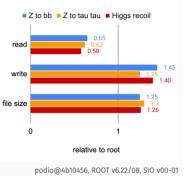
HELMHOLTZ

EDM4HEP: AN EVENT DATA MODEL FOR FUTURE COLLIDERS

ReconstructedParticle

Reconstruction & **Analysis**

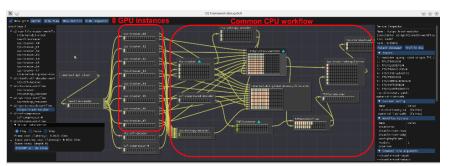

- event data models (EDM) are at the core of every HEP event processing framework
- **EDM4hep** aims at providing the EDM for all future collider projects in the context of the Key4hep project
- developed at DESY (DMA-ST2) and CERN

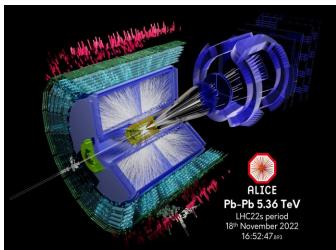

The pure the structure and semantics of physics data, tame Defining the structure and semantics of hardware.

The pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data, the pure tame Defining the structure and semantics of physics data.

POD buffers

- EDM4hep us event data mo define data en
- autogenerated code (using Jinja
- data stored as PCos (plain old data objects)
- several backends exist: ROOT. SIO, HDF5 (WIP)
- -> choose what's best for your use case

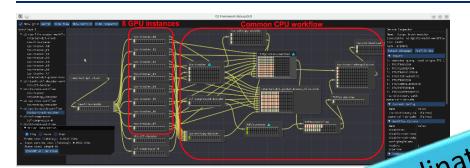



- EDM4hep event data model heavily inspired by LCIO
 - EDM used in the linear collider community for almost 20 years
- modernize the syntax
- improve the performance

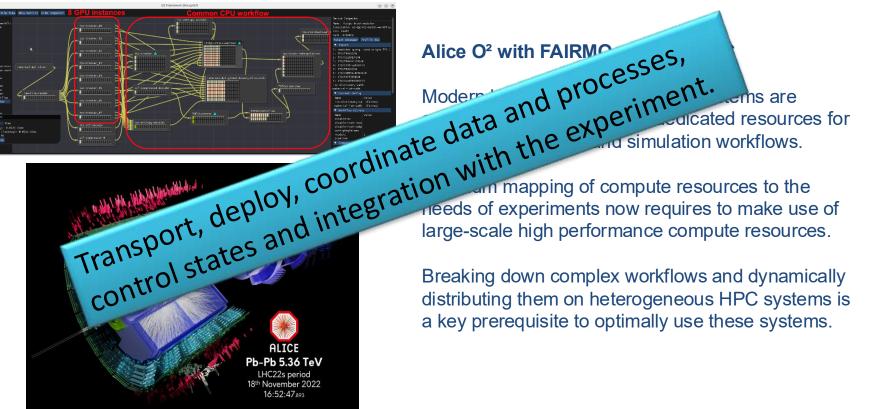
HELMHOLTZ

Integrating HPC into online experimental workflows

Alice O² with FAIRMQ + DDS + ODC

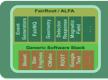

Modern heterogeneous compute systems are complex to use and provide dedicated resources for a variety of analysis and simulation workflows.

Optimum mapping of compute resources to the needs of experiments now requires to make use of large-scale high performance compute resources.


Breaking down complex workflows and dynamically distributing them on heterogeneous HPC systems is a key prerequisite to optimally use these systems.

Integrating HPC into online experimental workflows

a key prerequisite to optimally use these systems.



2023

• DMA repository of nodular software in full operation

2025

• Toolbox for near reaction analysis at extreme scales available

2027

• Surrogate models of multi-source, multi-modal experiments

Next Steps (POF IV)

- Launch the bi-weekly meeting schedule immediately
- Finalize the current software list for DMA repository
- Expand collaboration with other relevant initiatives (NFDI, EOSC, ..)
- Continue developing the toolbox for near-realtime data analysis with specific use cases
- Prepare for 2027 milestone planning: "Surrogate models of multi-source, multi-modal experiments"