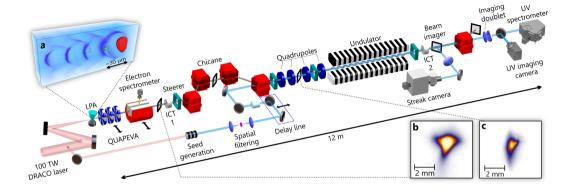


HELMHOLTZAI

Closing the Loop between Simulation and Experiment in Plasma and Photon Science

Jeffrey Kelling^{1,2}

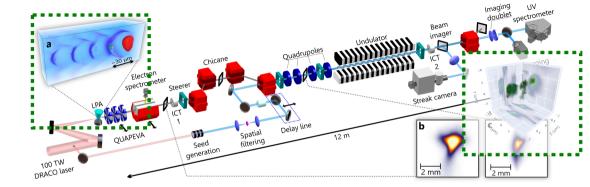

Ritz Ann Aguilar¹, Ankush Checkervarty³, Hardik Ghoshal¹, Vedhas Pandit¹, Jeyhun Rustamov¹, Jiaying Wang¹, Fong-Lin Wu¹, Michael Bussmann^{1,3}

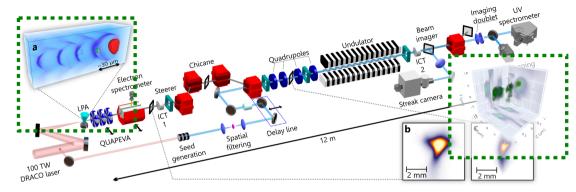
¹Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR)

²Faculty of Natural Sciences, Chemnitz University of Technology

³Center for Advanced Systems Understanding (CASUS)

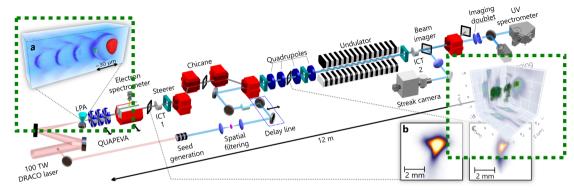
November 3, 2025





Experiments:

Inputs: Laser + plasma parameters


Outputs: Radiation + energy spectrum of bunch

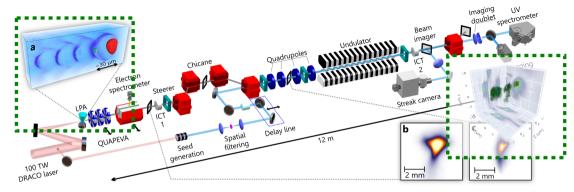
Experiments:

Inputs: Laser + plasma parameters

limited resolution and fidelity

Outputs: Radiation + energy spectrum of bunch

HELMHOLTZAI

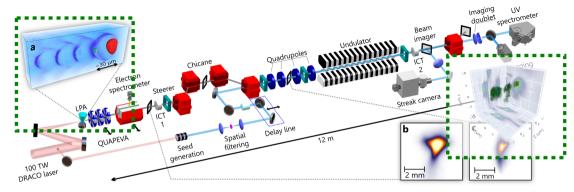

low-dimensional measurements

Experiments:

Inputs: Laser + plasma parameters

- limited resolution and fidelity
- shot-to-shot variance

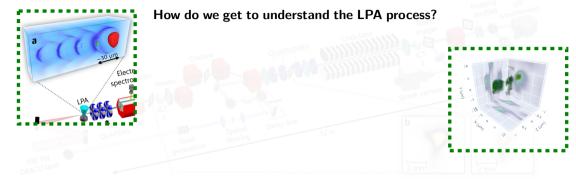
Outputs: Radiation + energy spectrum of bunch


- low-dimensional measurements
- → shot-to-shot variance

Experiments:

Inputs: Laser + plasma parameters

- limited resolution and fidelity
- shot-to-shot variance
- ⇒ noisy input

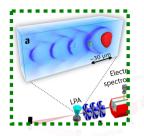

- low-dimensional measurements
- → shot-to-shot variance
- ⇒ noisy output

Experiments:

Inputs: Laser + plasma parameters

- limited resolution and fidelity
- shot-to-shot variance
- ⇒ noisy input

- low-dimensional measurements
- \rightarrow shot-to-shot variance
- ⇒ noisy output



How do we get to understand the LPA process?

Full 3D Simulations: PICon (1971)

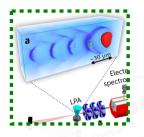
- + provide full information about studied process
 - full laser pulse shapes
 - full output particle phase-space

Experiments:

Inputs: Laser + plasma parameters

- limited resolution and fidelity
- shot-to-shot variance
- ⇒ noisy input

- low-dimensional measurements
- \rightarrow shot-to-shot variance
- ⇒ noisy output



How do we get to understand the LPA process?

Full 3D Simulations: PICon (22)

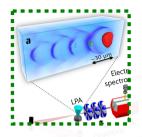
- + provide full information about studied process
 - full laser pulse shapes
 - full output particle phase-space
- computationally expensive

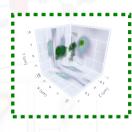
Experiments:

Inputs: Laser + plasma parameters

- limited resolution and fidelity
- shot-to-shot variance
- ⇒ noisy input

- low-dimensional measurements
- \rightarrow shot-to-shot variance
- ⇒ noisy output





How do we get to understand the LPA process?

Full 3D Simulations: PICon (22)

- + provide full information about studied process
 - full laser pulse shapes
 - full output particle phase-space
- computationally expensive

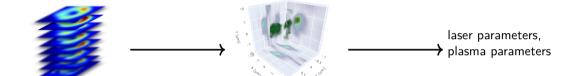
How can we connect observations from simulation and experiment?

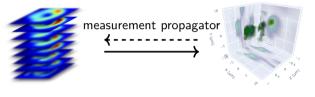
Experiments:

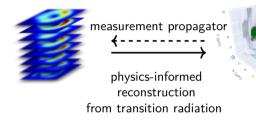
Inputs: Laser + plasma parameters

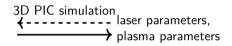
- limited resolution and fidelity
- shot-to-shot variance
- ⇒ noisy input

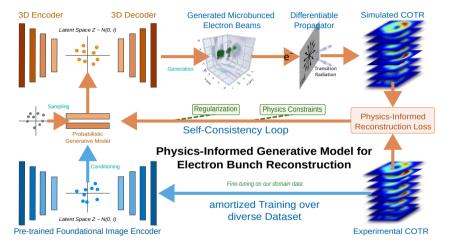
- low-dimensional measurements
- \rightarrow shot-to-shot variance
- ⇒ noisy output

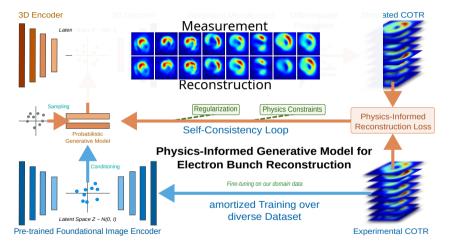




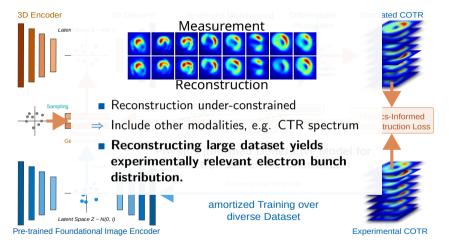

3D PIC simulation

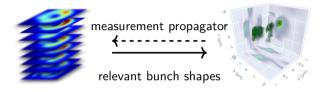

4----- laser parameters,
plasma parameters

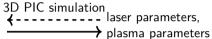


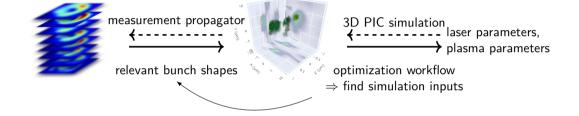


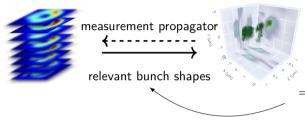


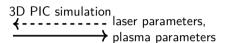




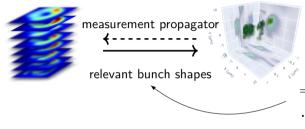






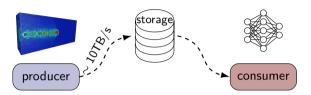


optimization workflow


- $\Rightarrow \mathsf{find} \; \mathsf{simulation} \; \mathsf{inputs}$
 - ... enabled by training on large simulations in transit

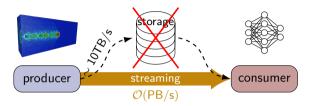
3D PIC simulation | laser parameters, | plasma parameters

optimization workflow


- $\Rightarrow \mbox{find simulation inputs}$
- ... enabled by training on large simulations in transit

Training Surrogate Models from Large-Scale Simulations¹

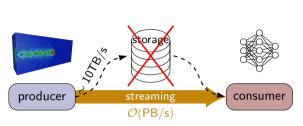
 Storage capacity or bandwidth may limit the amount of high-fidelity data that can be stored for training.



¹Kelling et al. 2025, https://arxiv.org/abs/2501.03383

Training Surrogate Models from Large-Scale Simulations¹

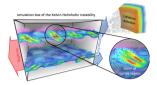
- Storage capacity or bandwidth may limit the amount of high-fidelity data that can be stored for training.
- Direct streaming workflow bypassing storage.



Training Surrogate Models from Large-Scale Simulations¹

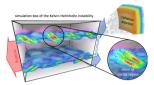
- Storage capacity or bandwidth may limit the amount of high-fidelity data that can be stored for training.
- Direct streaming workflow bypassing storage.
- lacksquare Parallel training to maximize throughput. ightarrow

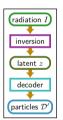
(c) producer and consumer are distributed across nodes (gray boxes), arranged to balance bandwidth requirements with availablity



Distributed \(Distributed Producer Consumer balance BW intra node inter node mixed

^{6/11} Closing the Loop • November 4, 2025


Kelvin-Helmholtz instability

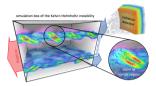


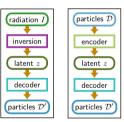


Kelvin-Helmholtz instability

(a) inversion of physical reduction

 $^{^2}$ Kelling et al. 2025, https://arxiv.org/abs/2501.03383



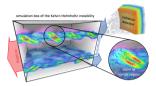


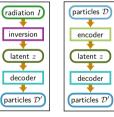
Kelvin-Helmholtz instability

(a) inversion of physical reduction

(b) compression decompression

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383





Kelvin-Helmholtz instability

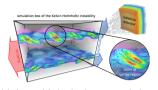
(a) inversion of physical reduction

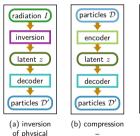
(b) compression decompression

particles \mathcal{D} encoder latent z surrogate radiation I

(c) physical forward prediction

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383





Kelvin-Helmholtz instability

decompression

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383

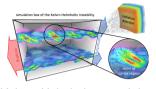
reduction

particles \mathcal{D}

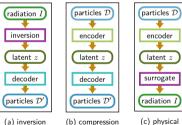
encoder

latent z

surrogate


radiation I

(c) physical


forward

prediction

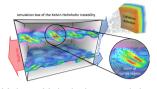
particles \mathcal{D} 1×1 conv particles \mathcal{D}' radiation Imax pool MLP MLP inversion deconv 3D INN mean μ std dev. σ MLP latent z

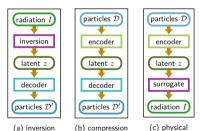
Kelvin-Helmholtz instability

of physical – forward reduction decompression (c) physical forward prediction

(a) - → inverse problem

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383





particles \mathcal{D} 1×1 conv particles \mathcal{D}' radiation Imax pool MLP MLP inversion deconv 3D INN mean μ std dev. σ MLP

Kelvin-Helmholtz instability

decompression

forward

prediction

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383

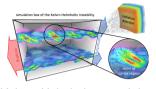
radiation I N particles D'

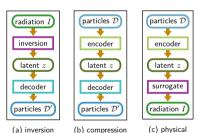
MLP MLP deconv 3D deconv 3D

MMLP std dev. \(\sigma \)

particles \mathcal{D}

- (a) → inverse problem
- (b) → point cloud variational autoencoder


HELMHOLTZ AI



of physical

reduction

Kelvin-Helmholtz instability

decompression

forward

prediction

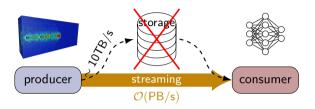
particles \mathcal{D}

- (a) → inverse problem
- (b) → point cloud variational autoencoder
- (c) → radiation surrogate

²Kelling et al. 2025, https://arxiv.org/abs/2501.03383

of physical

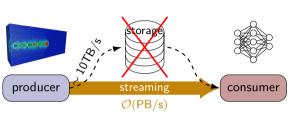
reduction

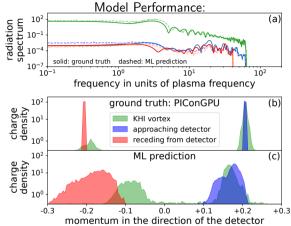


Proof of Concept: In-Transit Learning⁴

- Data is not stored, so not repeated in time.
- Variant of Experience-replay³ to avoid forgetting.
- Statistics from ensemble of simulation domains.

⁴Kelling et al. 2025, https://arxiv.org/abs/2501.03383



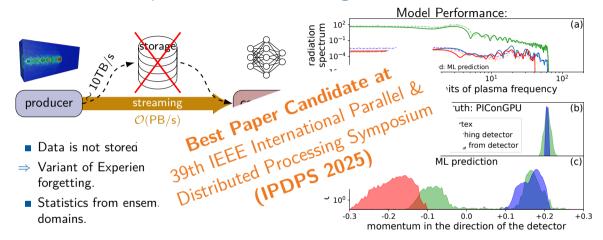


³https://arxiv.org/abs/1902.10486

Proof of Concept: In-Transit Learning⁴

- Data is not stored, so not repeated in time.
- Variant of Experience-replay³ to avoid forgetting.
- Statistics from ensemble of simulation domains.

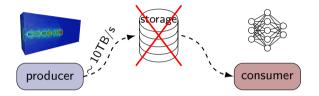
⁴Kelling et al. 2025, https://arxiv.org/abs/2501.03383



³ https://arxiv.org/abs/1902.10486

Proof of Concept: In-Transit Learning⁴

Closing the Loop · November 4, 2025

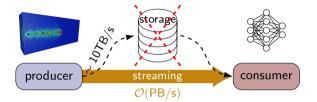


³ https://arxiv.org/abs/1902.10486

⁴Kelling et al. 2025, https://arxiv.org/abs/2501.03383

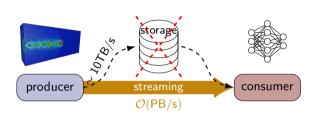
Recycling Large-Scale Simulation Data for Training

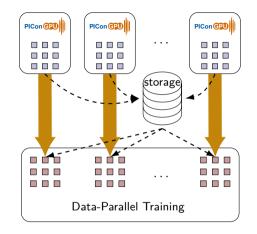
HELMHOLTZAI



Recycling Large-Scale Simulation Data for Training

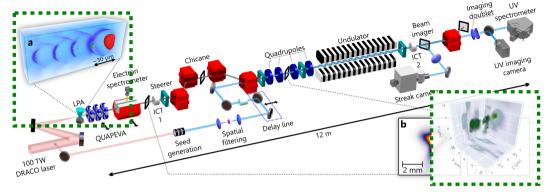
- Extend in experience-replay buffer to storage, for more diverse batches,
- + stream from simulations dynamically.

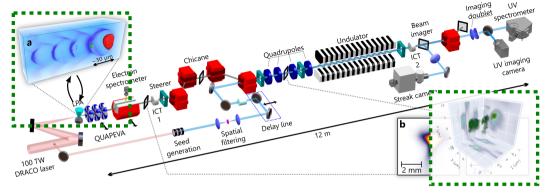


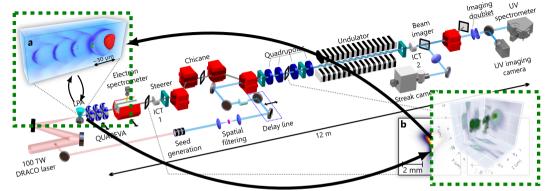


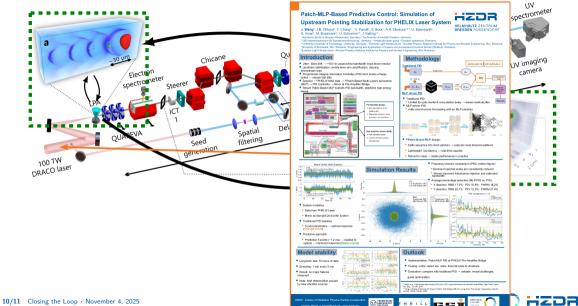
Recycling Large-Scale Simulation Data for Training

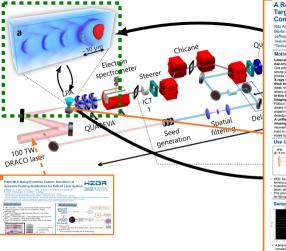
- Extend in experience-replay buffer to storage, for more diverse batches.
- stream from simulations dynamically.











HELMHOLTZ AI

A Roadmap Towards Direct Imaging of Plasma Targets During Laser Acceleration using Computational X-Ray Holography

HELMHOLTZ ZENTRUM DRESDEN BOSSENDORF

Ritz Ann Aquillar¹, Long Yang¹, Yangzhe Cul¹, Lingen Huang¹, Arie Irman¹, Maxwell LaBerge¹ Martin Rehwald¹, Toma Toncian¹, Karl Zeil¹, Michael Bussmann^{1,2}, Ulrich Schramm^{1,2}, Thomas Cowan^{1,3}, Jeffrey Kelling^{1,4}

Helmholtz-Zentrum Dresden-Rossendorf, Germany, PCASUS, Görlitz, Germany, Technische Universität Dresden, Germany, Technische Universität Chemnitz, Germany

Motivation Laser-plasma acceleration (LPA) needs non-invasive single-shot diagnostics Gas lets evolve on us-os scales with strong shot-to-shot variability invasive

probes disturb the tarnet X-rays enable direct imaging of dense. thick targets with phase sensitivity to weak refractive index changes, penetrating where optical diagnostics fail. In-line holography or Phase Contrast Imaging (PCI) are fast but ill-posed. Robust phase retrieval requires physics-

aware regularization and careful experiment design (energy, distance, detector). A unified, differentiable toolchain is missing. Separate simulators and

reconstructions along iteration and make i hard to optimize geometry, priors, and noise burious and to and

Modeling Materials

 &: phase shift decrement: 8: absorption index. The lookup table of materials[5] · An X-ray source traversing a target has the field:

 $\Psi(x, y) = \exp[-\mu t(x, y)/2] \exp[i\phi(x, y)]$ (2) T(f, y) = exp(-pr(x, y) = prop(pp(x, y), c, y) = -k f s/r v r)dr offensation coefficient at obose shift of thickness man & source wavelength, it: wave number, or density projection Differentiable Propagator/Forward Model Forward model for near-field imaging:

Fresnel-free space propagator or near-field propagations $D(\Psi) = \mathcal{F}^{-1}[\exp((-i\pi)/(2 \operatorname{Fr})(\epsilon^2 + \eta^2))\mathcal{F}[\Psi]]$ (3) a co inverse source constitutes. To Execute question (i) = 4 of (4 o) x, q: Inverse space coordinates, 71: Freshet num Ax: detector pixel size, x: propagation distance

Differentiable* optical propagators expose gradients, enabling end-to-end calibration, desig tuning, and learning-based reconstruction.

"With the use of machine learning framework (PyTorch) Use Case: X-Ray Imaging of a Hydrogen Jet with Holography/PCI

General Workflow Complex refractive index: n = 1 - 8 + i8 (1)

Phase Reconstruction Suite · Classical non-iterative ((Transport-of-Intensity Equation (TIEI), iterative Sayton Hybrid Innut-Outruth (unrolled)regularized) methods for

Etypica informed mechine learning colored simple about phase parcusery

respectively of the best focus image, done issues on our

absorption (s) + phone (d) Encured representing PCI simulations at different CDI.

XEEL beam is pre-focused by a compound refrective less (CBL.) forming a 40 µm spot on the target (left). A record CDL ICDL) placed downstream of the terret reformer the beam, after which it propagates to a detector This provides the resolution of a near-field detector while retaining a

Sample Phase Reconstruction of H. Jet

- A time-stack of areal mass density X(v, r) for the H, jet (left) is. compared to the single-distance TIE reconstruction of the exit phase
- show close shape agreement consistent with $\phi \propto -1$
- K-Ray Database, https://henies.bl/gov/optical_constants/
 J. Goodman, Inhoduction to Pouter Cytics (1998).
 D. Dassele et al. J. Microscopy (2007). Institute of Barbatina Physics : EWKT Dr. Ritz Azo Azular: caquilar@botcde - www.botcde

The linerate (not line: T/r, r), Non-dochart: A..., after office scaling)

 Use recovered phase as a prior to another model (either iterative) Small consisten disconnection generated from the TIE Insurance requirrization and single-material assumptions. References · Extend to multi-material targets

What's Next?

approaches or physics-informed machine learning)

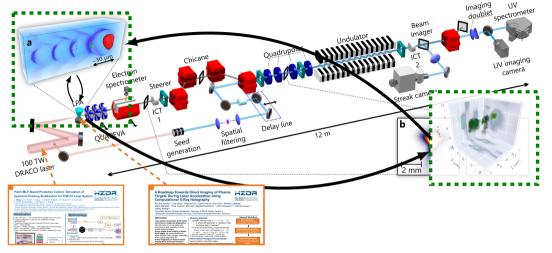
applications with quantitative metrics

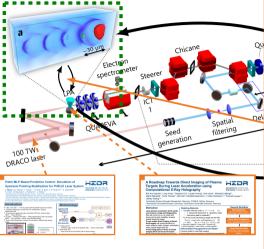
Phase reconstruction nineline

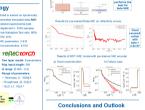
single material constants & fi Normaliza managed BCI

Inputs: Single-distance PCI frame L(x, y) at defocus x; photon energy E.

 Apply appropriate phase retieval technique to obtain initial I_{lab} (x, y). Mis use sisole distance TIE Storff securing sisole material model spatially constant 6/6, and slow-varying illumination. Recover orniected thickness and exit chase (chiect plane) Map ground truth (areal density) to expected phase: $\Sigma(x, t_*) = \int \rho(x, x, t_*)dx$







HELMHOLTZ AI

Domain Transfer from Simulation to Experimental Neutron and X-ray Reflectivity HELMHOLTZ ZENTOLIM Data Using Probabilistic Generative Models Bustanest D Amilian V Paneltt N Hedmannt J Kalinett Heighpolz-Zentum Drasden-Rossendorf Dresden, Germany, Heim und Walter IT-Solutions, Drasden, Germany, "TU Chempitz, Chempitz, Germany Motivation Regulte Domain our significant control follows Secured Differences (on Eur. data) by Model Model trained replicate real-world conditions -> poor model from scratch with both Application Nautro and Year referbility III-socied inverse problem: Different SLD conflored bands density service can result Linear his contains with chiff insortional · Explore bridging sim -> exp gap with fine-Methodology · Model is trained on dynamically 1. Conditional Normalising Flow (Neural generated sirvulated data AND Soline fore): . Labeled experimental data

a Suntheatre modelle reflectivité expres . Man real experimental assure into the simulated

: Physica informed training a Informatio than productional explanation hashes on SLO · Develop a bidirectional training achieve where Advantage: No labeled experimental data required

spectrometer

UV imaging

camera

+ Hedden feekans: 1024

· Kernel size=7, stride=2, padding=1 · Pully connected layer projecting to

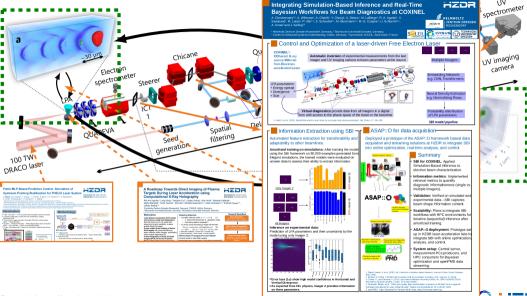
probablica desension of 120

Comple education strategy Fire Ama simulation Asimal module with tabulat amarimontal data

Manhore Vietal Neset

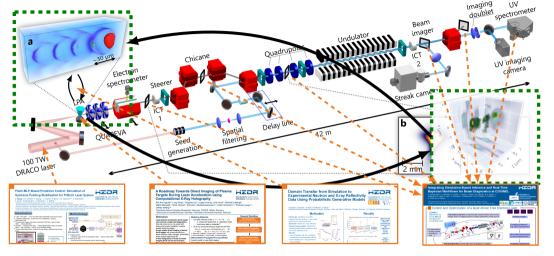
Mindestonic & et al. Machine.

2. Embeddisc National Data VAE accorded: . Train/Oridation/Test ratio 80% 6 corredutoral lawers (32, 32, 64, 126.


Explore performance of the kinds the fow and embedding returnly separately • Pre-train beta-VAE on reflectivity curves References

COST namenature 3 8 M · Flow parameters: 8.8 M

reflectorch


Rid input length: 250 O range: 10 005 - 0.31 Range of parameters:

• SLD (-1, 16) A 2

camera

HELMHOLTZ AI

End.

End.

- Arie Irman, Armin Gaith, Franziska Herrmann, Susanne Schöbel, ...
- Richard Pausch, Klaus Steiniger, Franz Pöschel, ...
- Alexander Debus, Maywell LaBerge, ...
- Thomas Kluge, Vidisha Rana, ...
- Hans-Peter Schlenvoigt, Martin Rehwald, Karl Zeil, ...
- Partners from GSI, ORNL, UDel

Thank You.

