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Laser-Plasma Accelerator-Driven Free Electron Laser @ HZDR

Experiments:
Inputs: Laser + plasma parameters

limited resolution and fidelity
shot-to-shot variance

⇒ noisy input

Outputs: Radiation + energy spectrum of bunch

low-dimensional measurements
→ shot-to-shot variance
⇒ noisy output

How do we get to understand the LPA process?

Full 3D Simulations: PICon GPU

+ provide full information about studied process
full laser pulse shapes
full output particle phase-space

− computationally expensive

How can we connect observations
from simulation and experiment?
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Training Surrogate Models from Large-Scale Simulations1
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Parallel training to maximize throughput. →
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(c) producer and consumer are distributed across
nodes (gray boxes), arranged to balance band-
width requirements with availablity

1Kelling et al. 2025, https://arxiv.org/abs/2501.03383
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Proof of Concept: In-Transit Learning4
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