Cool-down & warm-up of XFEL linac

Tobias Schnautz MKS

Hamburg, 19.06.2025

European

HELMHOLTZ

Overview

- **XFEL project: General information**
- **XFEL cryogenic system**
- **Cool-down / Warm-up:**
 - General information
 - Procedure
 - Risk handling
 - Summary

General information about the XFEL project

KFEL-Linac

- Length of accelerator: 1500m
- Accelerator modules: 96
- Max. electron energy: 17.5GeV
- Start of beam operation: January, 2017
- Start of user runs: September, 2017
- Three SASE undulators
 - serving 7 experimental stations
 - cover 300eV to 30keV photon energies

Tobias Schnautz, MKS, 06.05.2025

XFEL cryogenic system:

- 671 control valves
- 2647 temperature sensors
- 800 pressure sensors
- 212 flow sensors
- > 100 level sensors

General information about the XFEL project

- **XFEL-Cryomodules**
 - Cavities: 8 superconducting 9-cell 1.3GHz cavities per cryomodule (a total of 768 cavities)
 - Cavity cooling: Helium II bath at 2.0K (5/8K and 40/80K thermal shields)

8 SC cavities + 1 SC quadrupole = cryomodule (12m)

E. ZANON.

XM100

Overview of the XFEL cryogenic system

Tobias Schnautz, MKS, 06.05.2025

Overview of the XFEL cryogenic system

Vendor LINDE

European XFEL

Tobias Schnautz, MKS, 06.05.2025

Overview of the XFEL cryogenic system

<u>Vendor</u>	
LINDE	

Overview of the XFEL cryogenic system

Vendor LINDE

Overview of the XFEL cryogenic system Cryo plant **Distribution box DB54 XFEL-Purifier** Coldbox 41 Coldbox 43

Overview of the XFEL cryogenic system

Overview of the XFEL cryogenic system

Overview of the XFEL cryogenic system

Tobias Schnautz, MKS, 06.05.2025

Warm He-Pumps (AMTF):

- Backup for cold compressors CB44
- Limited capacity: no beam operation possible
- Important component for XFEL

XFEL cryogenic system: Linac

Vacuum

- Each cryomodule string (CS) has its own lso-vacuum
 - ► Iso-vaccum of two cryomodule strings (CS) is separated by a vacuum barrier

XFEL cryogenic system: Linac

Vacuum

- Each cryomodule string (CS) has its own Iso-vacuum
 - ► Iso-vaccum of two cryomodule strings (CS) is separated by a vacuum barrier
- Each cryomodule string has two pump ports, equipped with vacuum pumps

Vacuum

- Each cryomodule string (CS) has its own Iso-vacuum
 - ► Iso-vaccum of two cryomodule strings (CS) is separated by a vacuum barrier
- Each cryomodule string has two pump ports, equipped with vacuum pumps
- Each cryomodule (CM) within a string has one vacuum safety flap to protect vacuum barriers

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: General information

What is to be expected during warm-up of XFEL linac (Most likely) nothing spectactular, as...

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: General information

What is to be expected during warm-up of XFEL linac

- (Most likely) **nothing spectactular**, as...
 - Cryo operators are well trained

XFEL warm up: General information

What is to be expected during warm up of XFEL linac

- (Most likely) **nothing spectactular**, as...
 - Cryo operators are well trained
 - Warm-up instruction document

XFEL warm-up: General information

What is to be expected during warm up of XFEL linac

(Most likely) nothing spectactular, as...

- ► Cryo operators are well trained
 - Warm-up instruction document
 - Experience (FLASH, test-stands)

Time

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: General information

What is to be expected during warm up of XFEL linac

- (Most likely) **nothing spectactular**, as...
 - ► Cryo operators are well trained
 - Warm-up instruction document
 - Experience (FLASH, test-stands)
 - XFEL cryomodules have been thermally cycled on test-stand (AMTF) without problems
 - Design / manufacturing failures would have been "visible"

XFEL warm-up: General information

XFEL warm-up: Procedure

Warm-up instruction document

Overview of main components of XFEL cryogenic system

XFEL warm-up: Procedure

Warm-up instruction document

- Overview of main components of XFEL cryogenic system
- Max. allowable working pressures

3 Pressure Data

Colour code	Design pressure	Pneum. pressure test 1.1 x design pressure	Leakage test 1 x design pressure	Remarks
	20 bar(g)	22 bar(g)	20 bar(g)	PED
	16 bar(g)	17.6 bar(g)	16 bar(g)	PED
	4 bar(g)	4.4 bar(g)	4 bar(g)	PED
				no pressure and leak test
x	-	-	-	Equipment to be removed for pressure and leakage test
П	-	-	-	Equipment to be closed for pressure and leakage test

XFEL warm-up: Procedure

Warm-up instruction document

- Overview of main components of XFEL cryogenic system
- Max. allowable working pressures
- Max. allowable temperature gradients

- Alarm values for different components
 - High values (e.g. 15K for GRP vertical)
 - $\circ~$ Highhigh values (e.g. 20K for GRP vertical)

XFEL warm-up: Procedure

Warm-up instruction document

- Overview of main components of XFEL cryogenic system
- Max. allowable working pressures
- Max. allowable temperature gradients
- Different phases of warm-up
 - ► Phase 0: Stop CC operation
 - Phase 1: Evaporation of liquid helium (static heat load)
 - ► Phase 2: Cold gas flow of 10K
 - Phase 3: Conversion of coldbox to 80K mode
 - ▶ Phase 4: Cold gas flow of approx. 50K (below triple point of nitrogen: 63K)
 - Phase 5: Adjustment of flat ramp from 50K- 80K (to slowly reach/pass through 63K)
 - ▶ Phase 6: Adjustment of ramp (dT=50K) for warm up 80K 300K
 - ▶ Phase 7: Warm gas flow of 300K

XFEL warm-up: Procedure

Warm-up instruction document

- Overview of main components of XFEL cryogenic
- Max. allowable working pressures
- Max. allowable temperature gradients
- Different phases of warm-up
 - ► Phase 0
 - ► Phase 1
 - ► Phase 2
 - ▶ ..

For all phases

Color code on "P&ID"

- ► Relevant valves, sensors, etc.
- Plausibility check of values (flows, pressures, temperatures)
 Inspection rounds for identification of failures/defects/damage, etc.

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Risk: Exceeding $\Delta T < 50K$ at triple point of nitrogen (63K)

XFEL warm-up: Risk handling / provisions

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)

Leaks: Air in the Iso-vacuum will deposit on cold surfaces of He process pipes (& shields)
Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)

Leaks: Air in the Iso-vacuum will deposit on cold surfaces of He process pipes (& shields)

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

Leaks: Air in the Iso-vacuum will deposit on cold surfaces of different temperature levels

► >90% of infiltrated air is deposited on 2K and 5-8K level

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Leaks: Air in the Iso-vacuum will deposit on cold surfaces of different temperature levels
 - ► >90% of infiltrated air is deposited on 2K and 5-8K level
 - Dimension of deposited air is unknown (8 years of cold operation)

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Leaks: Air in the Iso-vacuum will deposit on cold surfaces of different temperature levels
 - ► >90% of infiltrated air is deposited on 2K and 5-8K level
 - Dimension of deposited air is unknown (8 years of cold operation)
- What will happen at triple point of nitrogen (63K)?

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Leaks: Air in the Iso-vacuum will deposit on cold surfaces of different temperature levels
 - ► >90% of infiltrated air is deposited on 2K and 5-8K level
 - Dimension of deposited air is unknown (8 years of cold operation)

What will happen at triple point of nitrogen (63K)?

- Deposited air will evaporate
- ► Vacuum gets worse
- ► Temperature gradient of helium in piping system might increase

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Leaks: Air in the Iso-vacuum will deposit on cold surfaces of different temperature levels
 - ► >90% of infiltrated air is deposited on 2K and 5-8K level
 - Dimension of deposited air is unknown (8 years of cold operation)

What will happen at triple point of nitrogen (63K)?

- Deposited air will evaporate
- ► Vacuum gets worse
- ► Temperature/pressure of helium in piping system might increase spontaneously

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

Provisions:

Warm-up procedure: Warm up with margin in temperature gradient

► Design: $\Delta T < 50K$ for a single pipe in cryomodule

Forward flow: $\Delta T < 50 K$

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Warm-up procedure: Warm up with margin in temperature gradient
- ► Design: $\Delta T < 50K$ for a single pipe in cryomodule
- ► During warm-up: $\Delta T = 50$ K along the whole linac (forward & return)

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Warm-up procedure: Warm-up with margin in temperature gradient
- ► Design: $\Delta T < 50K$ for a single pipe in cryomodule
- ► During warm up: $\Delta T < 50$ K along the whole linac (forward & return)
- ► $\rightarrow \Delta T = 0.02 \text{K}$ is adjusted for a single pipe in cryomodule \rightarrow margin of ~50K for single cryomodule!

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Warm-up procedure: Warm up with margin in temperature gradient
- **Experience**: Warm-up of FLASH linac after 4 years of cold operation (no problems)
 - Vacuum pressure reached > 1 mbar without critical impact on temperature rise

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Warm up procedure: Warm-up with margin in temperature gradient
- **Experience:** Warm-up of FLASH linac after 4 years of cold operation (no problems)
 - Vacuum pressure reached > 1 mbar without critical impact on temperature rise
 - ► Max. Δ T along 4 cryomodules: Δ T = 50K
 - \blacktriangleright \rightarrow For a single cryomodule: Δ T = 6K (not critical)

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

- Warm-up procedure: Warm up with margin in temperature gradient
- Experience: Warm-up of FLASH linac after 4 years of cold operation (no problems)
- Calculations: Worst case scenario with Iso-vacuum at 1000mbar (no problems)
 - $\blacktriangleright \Delta T$ for one cryomodule: $\Delta T = 20K$ (not critical)

Risk: Exceeding ΔT < 50K at triple point of nitrogen (63K)</p>

Provisions:

- Warm-up procedure: Warm up with margin in temperature gradient
- Experience: Warm-up of FLASH linac after 4 years of cold operation (no problems)
- Calculations: Scenario with Iso-vacuum at 1000 mbar (no problems)
 - $\blacktriangleright \Delta T$ of 20K to neigbouring cryomodule

Conclusion: With ΔT = 50K along the linac - No reasonable scenario during warm-up, where critical temperature gradients for a cryomodule will be exceeded

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Risk: Losing helium (operational problems, cryoplant shutdown, etc.)

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

- **Risk:** Losing helium (operational problems, cryoplant shutdown, etc.)
- **Provisions:**
 - Warm up procedure: Evaporation of liquid helium (phase 1)

- Risk: Losing helium (operational problems, cryoplant shutdown, etc.)
- Provisions:
 - Warm up procedure: Evaporation of liquid helium (phase 1)
 - Warm-up procedure: Reduced helium pressure to 5bara (in most of circuits)

Risk: Losing helium (operational problems, cryoplant shutdown, etc.)

Provisions:

- Warm-up procedure: Evaporation of liquid helium (phase 1)
- Warm-up procedure: Reduce helium pressure to 5 bara (in most circuits)
- Helium inventory: Reduction of helium inventory in linac from 3562kg to 139kg
 - Released helium will be stored in storage tanks

Beam operation

40/80K circuit: 135kg 5/8K circuit: 900kg 2K circuit: 2527kg **Total: 3562kg**

<u>Warm up</u>

40/80K circuit: 33kg 5/8K circuit: 26kg 2K circuit: 80kg Total: 139kg

Risk: Loosing helium (operational problems, cryoplant shutdown, etc.)

Provisions:

- Warm-up procedure: Evaporation of liquid helium (phase 1)
- Warm-up procedure: Reduce helium pressure to 5 bara (in most circuits)
- \rightarrow Helium inventory: Reduction of helium inventory in linac from 3562kg to 139kg
 - ► Released helium will be stored in storage tanks

Conclusion: Following the warm-up procedure, only a minor risk of losing helium remains

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Risk: Process pipe rupture within cryomodule

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

- Risk: Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flooded with cold helium)
 - $\blacksquare \rightarrow$ High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

- Risk: Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flooded with cold helium)
 - $\blacksquare \rightarrow$ High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage
 - **XFEL during warm-up**:
 - ▶ Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - $\blacktriangleright \rightarrow$ Load on vacuum barrier > 1 bar

XFEL warm-up: Risk handling / provisions

Risk: Process pipe rupture within cryomodule

- Pressure rise in vacuum space (flooded with cold helium)
- \rightarrow High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage
- XFEL during warm-up:
 - Pipe rupture would pressurize lso-vacuum of a cryo string > 1 bar
 - \blacktriangleright \rightarrow Load on vacuum barrier > 1 bar

Provisions:

Pump port Pump port THEFT String N String N+1 Vacuum barrier Beam pipe Process pipes

CERN

Linac design: Vacuum barrier of CS is protected by safety flap (@ 1bara) \rightarrow cold helium is released in tunnel

- Risk: Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flooded with cold helium)
 - $\blacksquare \rightarrow$ High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage
 - **XFEL during warm-up**:
 - ▶ Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - $\blacktriangleright \rightarrow$ Load on vacuum barrier > 1 bar

Provisions:

Linac design: Vacuum barrier of CS is protected by safety flap (@ 1bara) → cold helium is released in tunnel Linac design: Vacuum barriers are designed for 2 bar

- **Risk:** Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flooded with cold helium)
 - \rightarrow High load on vacuum barrier

- Load on vacuum barrier too high: serious damage
- XFEL during warm-up:

XFEL warm-up & risk handling

- Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
- \blacktriangleright \rightarrow Load on vacuum barrier > 1 bar

Provisions:

- Linac design: Vacuum barrier of CS is protected by safety flap (@ 1 bara) → cold helium is released in tunnel Linac design: Vacuum barriers are designed for 2 bar
 - ► No danger for vacuum barrier if Iso-vacuum of cryo string is vented

Tobias Schnautz, MKS, 06.05.2025

- Risk: Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flooded with cold helium)
 - $\blacksquare \rightarrow$ High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage
 - **XFEL** during warm-up:
 - Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - $\blacktriangleright \rightarrow$ Load on vacuum barrier > 1 bar

Provisions:

- Linac design: Vacuum barrier of CS is protected by safety flap (@ 1 bara) → cold helium is released in tunnel Linac design: Vacuum barriers are designed for 2 bar
 - ► No danger for vacuum barrier if cryo string is vented

 \rightarrow High load on vacuum barrier

XFEL warm-up: Risk handling / provisions

Risk: Process pipe rupture within cryomodule

- Load on vacuum barrier too high: serious damage
- XFEL during warm-up:
 - Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - \blacktriangleright \rightarrow Load on vacuum barrier > 1 bar

- Linac design: Vacuum barrier of CS is protected by safety flap (@ 1 bara) -> cold helium is released in tunnel Linac design: Vacuum barriers are designed for 2 bar
- Warm up procedure: Vacuum spaces of strings might be connected during warm up
 - Probably no helium would enter the tunnel (no need for safety flap to open)

XFEL warm-up: Risk handling / provisions

Risk: Process pipe rupture within cryomodule

Very unlikely

- \rightarrow High load on vacuum barrier
- Load on vacuum barrier too high: serious damage
- XFEL during warm-up:
 - ▶ Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - $\blacktriangleright \rightarrow$ Load on vacuum barrier > 1 bar

Provisions:

Linac design: Vacuum barrier of CS is protected by safety flap (@ 1 bara) \rightarrow cold helium is released in tunnel Linac design: Vacuum barriers are designed for 2 bar

Warm up procedure: Vacuum spaces of strings might be connected during warm up

Probably no helium would enter the tunnel (no need for safety flap to open)

Might not be necessary

CERN

Tobias Schnautz, MKS, 06.05.2025

Tobias Schnautz, MKS, 06.05.2025

XFEL warm-up: Risk handling / provisions

- Risk: Process pipe rupture within cryomodule
 - Pressure rise in vacuum space (flouded with cold helium)
 - $\blacksquare \rightarrow$ High load on vacuum barrier
 - Load on vacuum barrier too high: serious damage
 - **XFEL during warm-up**:
 - ▶ Pipe rupture would pressurize Iso-vacuum of a cryo string > 1 bar
 - $\blacktriangleright \rightarrow$ Load on vacuum barrier > 1 bar

Provisions:

- Linac design: Vacuum barrier of CS is protected by safety flap (@ 1 bara) \rightarrow cold helium is released in tunnel
- Linac design: Vacuum barriers are designed for 2 bar
- Warm up procedure: Vacuum spaces of strings might be connected during warm up

Conclusion: An incident like at CERN seems not to be possible

Tobias Schnautz, MKS, 06.05.2025

XFEL warm up: Risk handling / provisions

Risk: Contamination of beam vacuum due to leaks developing during warm-up

Risk: Contamination of beam vacuum due to leaks developing during warm-up

- So far NO LEAKS are known in the system
 - ► All modules were tested under operational conditions in test stand
 - ► No indications of leaks during cool-down
 - ► Note: Leaks are difficult to detect under cold conditions

Risk: Contamination of beam vacuum due to leaks developing during warm-up

- So far NO LEAKS are known in the system
 - ► All modules were tested under operational conditions in test stand (no problems)
 - No indications of leaks during cool down
 - ► Note: Leaks are difficult to detect under cold conditions

Provision: Preparation for detection of leaks and possible additions of pump stations where needed

- Beam vacuum
 - ► Beam vacuum of cryo strings will be sealed by gate valves
- ► Additional turbo pumps and leak detectors are prepared for quick reaction in case of suspicious behaviour

Risk: Contamination of beam vacuum due to leaks developing during warm-up

- So far NO LEAKS are known in the system
 - All modules were tested under operational conditions in test stand (no problems)
 - No indications of leaks during-cool down
 - ► Note: Leaks are difficult to detect under cold conditions

Provision: Preparation for detection of leaks and possible additions of pump stations where needed

- Beam vacuum
 - Beam vacuum of cryo strings will be sealed by gate valves
- Additional turbo pumps and leak detectors are prepared for quick reaction in case of suspicious behaviour Isolation vacuum
- ► High volume pump stations are prepared, will be brought to tunnel before warm up starts and connected to vacuum sections

Risk: Contamination of beam vacuum due to leaks developing during warm-up

- So far NO LEAKS are known in the system
 - All modules were tested under operational conditions in test stand (no problems)
 - No indications of leaks during cool down
 - ► Note: Leaks are difficult to detect under cold conditions

Provision: Preparation for detection of leaks and possible additions of pump stations where needed

- Beam vacuum
 - Beam vacuum of cryo strings will be sealed by gate valves
- Additional turbo pumps and leak detectors are prepared for quick reaction in case of suspicious behaviour Isolation vacuum
- ► High volume pump stations are prepared, will be brought to tunnel before warm up starts and connected to vacuum sectors
- Data logging during warm-up is key
- Data analysis important to quickly react to potential problems

Risk: Contamination of beam vacuum due to leaks developing during warm-up

- So far NO LEAKS are known in the system
 - All modules were tested under operational conditions in test stand (no problems)
 - No indications of leaks during cool down
 - ► Note: Leaks are difficult to detect under cold conditions

Provision: Preparation for detection of leaks and possible additions of pump stations where needed

- Beam vacuum
 - ► Beam vacuum of cryo strings will be sealed by gate valves
- Additional turbo pumps and leak detectors are prepared for quick reaction in case of suspicious behaviour Isolation vacuum
- ► High volume pump stations are prepared, will be brought to tunnel before warm up starts and connected to vacuum sectors
- Data logging during warm up is key
 - Data analysis important to quickly react to potential problems

Conclusion: Vacuum values will be monitored and analyzed. No reason to be concerned.

▶ ...

XFEL warm-up & risk handling

Summary

The XFEL linac will be warmed up for the first time

There is always a risk but the system is designed for dynamic procedures, and...

- Procedures are well prepared
- ► The cryogenic design is safe
- ► We have longterm and adequate experience

(Most likely) nothing spectactular will happen but having a warm XFEL linac!
Tobias Schnautz, MKS, 06.05.2025

Thank you!

European XFEL