▲□▶▲□▶▲□▶▲□▶ □ のQ@

Beamline 22 Experimental study with The BACCHUS detector

Héctor de la Torre Pérez

Universidad Autónoma de Madrid

14. September 2007

DESY summer stundent program 2007

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

The BACCHUS Detector

- Detector overview
- The detector parts
- Data aquisition
- 2 Res

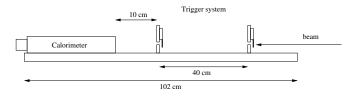
Results

- Parameters
- Rates measurements
- Energy distribution
- The fiber bundle

3 Conclusions

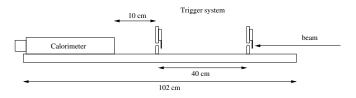
Detector overview

Detector overview


The **BACCHUS** detector (BeAm Characterizing Calorimeter pincHed from argUS)

(ロ) (同) (三) (三) (三) (○) (○)

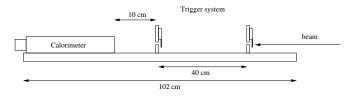
The detector parts


The detector parts

- The Support: Self made out of aluminium, mounted into a mechanical stage.→Alignment needed
- The trigger system:4 scintillators counters connected to PMT's.→They select the beam
- The calorimeter: Lead glass block from ARGUS, PMT connected to meassure the photons from shower.→Energy

The detector parts

The detector parts

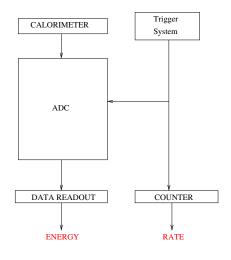

- The Support: Self made out of aluminium, mounted into a mechanical stage.—Alignment needed
- The trigger system:4 scintillators counters connected to PMT's.→They select the beam
- The calorimeter: Lead glass block from ARGUS, PMT connected to meassure the photons from shower.→Energy

(日)

The detector parts

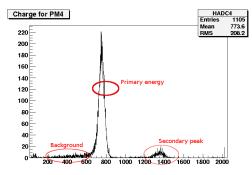
The detector parts

- The Support: Self made out of aluminium, mounted into a mechanical stage.—Alignment needed
- The trigger system:4 scintillators counters connected to PMT's.→They select the beam
- The calorimeter: Lead glass block from ARGUS, PMT connected to meassure the photons from shower.→Energy



(日) (日) (日) (日) (日) (日) (日)

Data aquisition


How does the detector work?

- An electron comes into the experimental area.
 - It can hit the 4 scintillators → trigger signal.
 - It can hit the calorimeter
 → energy readout.
- ② ADC work. → We register and store the calorimeter signal only when the trigger signal is generated. We trigger only the more o less parallel particles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data analysis

We analyse this data using ROOT

Results

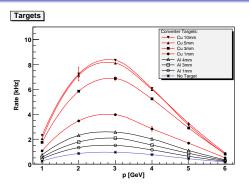
- The primary peak → Primary energy.
- The background → Contamination of the beam.
- The secondary peak → Two hits in the calorimeter.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

From the trigger signal, using a counter we have also RATES

(ロ) (同) (三) (三) (三) (○) (○)

Parameters

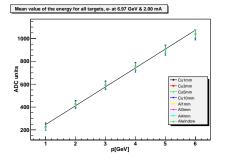

Parameters that we had change

- Converter Target \rightarrow 7 different.
- Momentum selection in the magnet.
- Primary target.

Next results with DESY II at 7 GeV.

Rates measurements

Rates for different converter targets

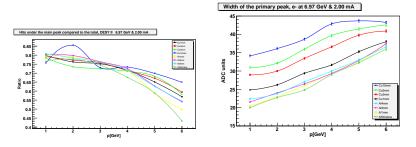

- The rates for different momentum selection
 - Grows with the thickness of the target.
 - Low rates for energies close to desy II energies, expected, 1/E bremmstrahlung spectrum.

- Not linear with the thickness!!
- Not higher rates for low energies!!

We have not enough simulated data to compare with this, longer runs crucial to understand the rates data.

Energy distribution

Energy distribution for different converter targets


- The mean value of the energy → Linear relationship & no change with the material.
- From the simulation → Linear relationship observed

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Results ○○0●○○

Energy distribution

Contamination of the beam

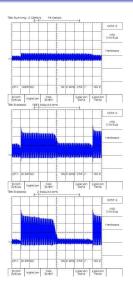
- The ratio of hits in the calorimeter around the primary energy → Lot of contamination for 6 GeV.
- The width of the primary peak also grows → The beam energy loses definition

The fiber bundle

Using a different primary target

Comparison of rates between normal fiber and fiber bundle, DESY II 0.27 mA and 3 GeV/c

Rate for 7 μ m targetRate for fiber bundle770 \pm 20 Hz2500 \pm 100 Hz


We gain a factor **3**, *In simulation only 1.2, what is happening?*, important for low current environments.

• upcoming of PETRA III \rightarrow low current running in DESY II

Problems with affecting DESY II beam? or PETRA III work?

The fiber bundle

Influence of the target on the beam

- Without any fiber inside.
- With the single fiber inside
 → 30% looses during
 deacceleration, no
 problem.
- With the thick target inside

 → 70% looses during
 deacceleration, looses
 during acceleration, may
 be a problem!
- More studies needed!!.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions and outview

- Lots of data collected for future Test Beam users.
- Detector and software for analysis available for upcoming studies.
- To understand better the experimental data : More data from the simulation needed.