Test Beam Line	Our Project o	Simulation 0000000	Conclusion o	Experimental results

Characteristics and Monte Carlo Simulation Studies of Test Beam Line 22 Summerstudent Program 2007

Philipp Rahe

Universität Osnabrück

14. September 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Test Beam Line	Our Project o	Simulation 0000000	Conclusion O	Experimental results
Outline				

Our Project

- 3 Simulation
 - Introduction
 - Geometry
 - DESY II beam profile
 - Results

4 Conclusion

- 5 Experimental results
 - Next talk by Héctor de la Torre Pérez

- Increasing demand for research and development of detector components:
 - proof-of-principle
 - testing prototypes
 - final calibration
 - ...
- Four test beam lines 21, 22, 24 and 24/1 available at DESY II
- Electrons up to 7 GeV
- Concurrent operations with other DESY facilities (PETRA III)

Test Beam Line	Our Project	Simulation	Conclusion	Experimental results
○●		0000000	o	o
Test Ream	lines at F			

Test beams at DESY are used in "'parasitic"' mode:

- DESY II operated with electrons or positrons
- Bremsstrahlung is produced in a 7 μ m thick carbon fiber
- Pair production in different secondary targets
- Momentum selection with a dipole magnet
- Beam formation with collimators

Test Beam Line	Our Project ●	Simulation	Conclusion O	Experimental results o
Our Project				

- Building a detector to measure rates and energies
- Programming software to analyse the data of this detector

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Measuring rates and energies at test beam line 22
- Implementing a Monte Carlo simulation to support the measurements

Test Beam Line	Our Project ●	Simulation	Conclusion O	Experimental results o
Our Project				

- Building a detector to measure rates and energies
- Programming software to analyse the data of this detector

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Measuring rates and energies at test beam line 22
- Implementing a Monte Carlo simulation to support the measurements

Monte Carlo Simulation Study with GEANT4

- The toolkit GEANT4 is widely used in HEP, astrophysics and in medicine applications
- Simulates passage of particles through matter
- Steps we have implemented:
 - Geometry of the beamline
 - Physical processes and involved particles
 - Sensitive detectors for data acquisition

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

http://cern.ch/geant4/

 \Rightarrow Complete simulation of beam line 22

Test Beam Line	Our Project	Simulation ••••••	Conclusion o	Experimental results
Geometry				

Some parameters:

- Primary particles: Momentum and position
- Primary and secondary targets: Material and geometry

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

- Magnetic field: Strength
- Collimators: Inner sizes

Test Beam Line	Our Project	Simulation ••••••	Conclusion o	Experimental results
Geometry				

Some parameters:

- Primary particles: Momentum and position
- Primary and secondary targets: Material and geometry

・ コット (雪) (小田) (コット 日)

- Magnetic field: Strength
- Collimators: Inner sizes

Test Beam Line oo	Our Project o	Simulation	Conclusion o	Experimental results		

Modelled Beam Profiles of DESY II

No distribution

Spatial distribution according to the emittances $\sigma_x = 350$ nm, $\sigma_y = 35$ nm

Momentum distribution

 $\sigma_{\phi} = 0.5 \,\mathrm{mrad}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

(日)

- $1250 \times 10000 e^-$ at 7 GeV, lateral distributed
- Single fiber with a diameter of 7 μm
- Cu 10 mm

• $1250 \times 10000 e^-$ at 7 GeV, momentum distributed

(日)

- Single fiber with a diameter of 7 μm
- Cu 10 mm

00	0	0000000	0	0	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $1250 \times 10000 e^-$ at 7 GeV, lateral distributed
- Single fiber with a diameter of 7 μm
- Cu 10 mm

Test Beam Line	Our Project	Simulation	Conclusion	Experimental results
oo	o	○○○○○○	o	
Fiber bundle				

- DESY II will be used for continuous PETRA III injection with positrons at lower current
- Test beams require high rates
- Possible solution: Using a bundle of fibers, each 7 μm thick, but actual layout is not known
- First shot in the simulation: 5 fibers along the beamaxis
- Simulation reveals an facor of 1.2.
- Needs improvement
- The simulation cannot give any information about the beam in DESY II

(日) (日) (日) (日) (日) (日) (日)

Test Beam Line	Our Project	Simulation 0000000	Conclusion •	Experimental results
Conclusion				

- Basic information about the beam line such as the profiles and energy distributions are available.
- Qualitative verifications of the measured data are achieved.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- To compare rates with the experimental results a high number of primary events has to be used, this was not possible on our machines.
- Geometry for further application is available

Test Beam Line	Our Project o	Simulation 0000000	Conclusion O	Experimental results

The Bacchus Collaboration

Several experiments were done characterizing the beam line and using a self built detector:

Bacchus

... more information will be given in the next talk.

