Tutorial MicroTCA Management

"How to become a MicroTCA expert – this year: within 25 minutes"

14th MicroTCA Workshop for Research and Industry

DESY, Hamburg

December 2nd – 4th, 2025

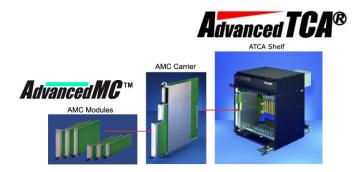
UNCLASSIFIED

- About N.A.T.
- From ATCA to MTCA two well-connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

- About N.A.T.
- From ATCA to MTCA two well-connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

About N.A.T. – key facts

- Founded in 1990
- Privately owned and owner lead business
- Based in greater Cologne area in Germany (City of Bonn)
- Focus on innovation in communication
- Equipment for reliable operation with longevity commitment, including life-cycle management and upgrade/migration
 - comprehensive standard product line based on modular open standards
 - custom solutions designed to customer defined specification
- Quality "made in Germany" since more than 35 years



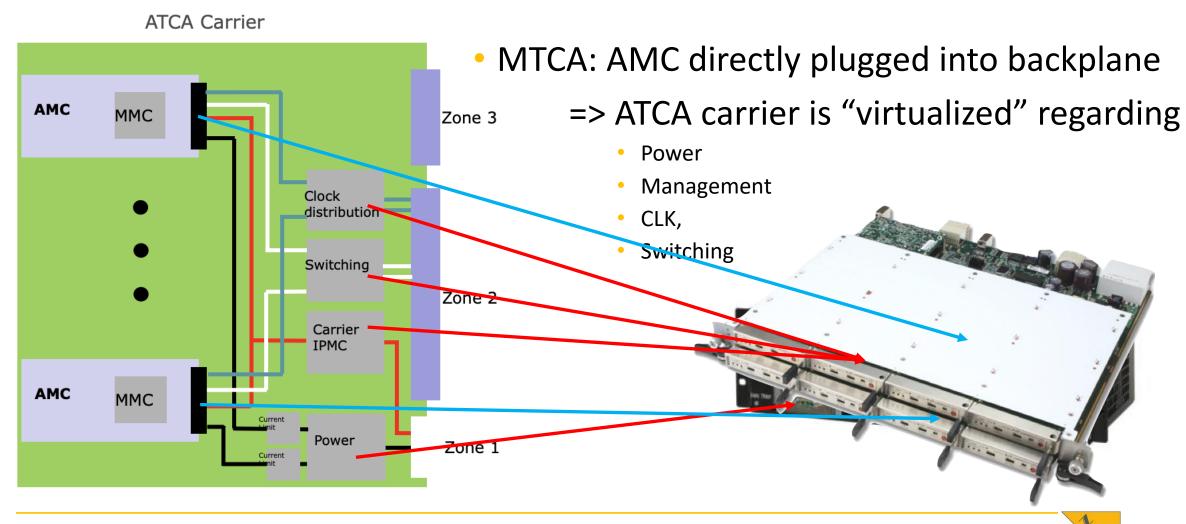
- About N.A.T.
- From ATCA to MTCA two well-connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

Where MicroTCA came from

- 2002: Advanced Telecom Computing Architecture (ATCA)
 - Telecom carrier grade communication equipment
 - Switched MOSA using serial communication
 - New mezzanine standard: Advanced Mezzanine Card (AMC)

2006: Micro Telecom Computing Architecture (MicroTCA, MTCA)

- Derived from Advance Telecom Computing Architecture (ATCA)
 - => common system management and re-use of Advanced Mezzanine Cards (AMCs)
- Targeting at any telecom application ATCA would be an overkill for
- Switched MOSA using serial communication



From ATCA to MicroTCA – creating the living environment for AMCs

Where MicroTCA is being used today

Today MicroTCA (MTCA) is being used in almost any vertical market:

Quantum Computer

Vision and AI

Medical

(Tele-) Communication

Military

Traffic

Research

Industrial Control

Test & Measurement

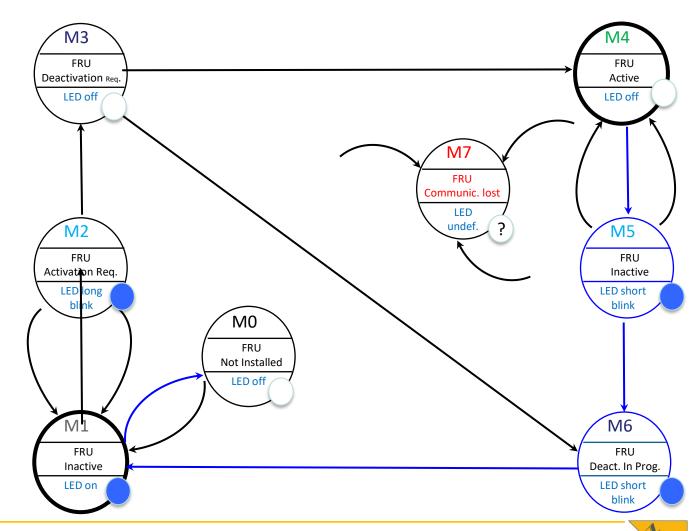
???

... any many more

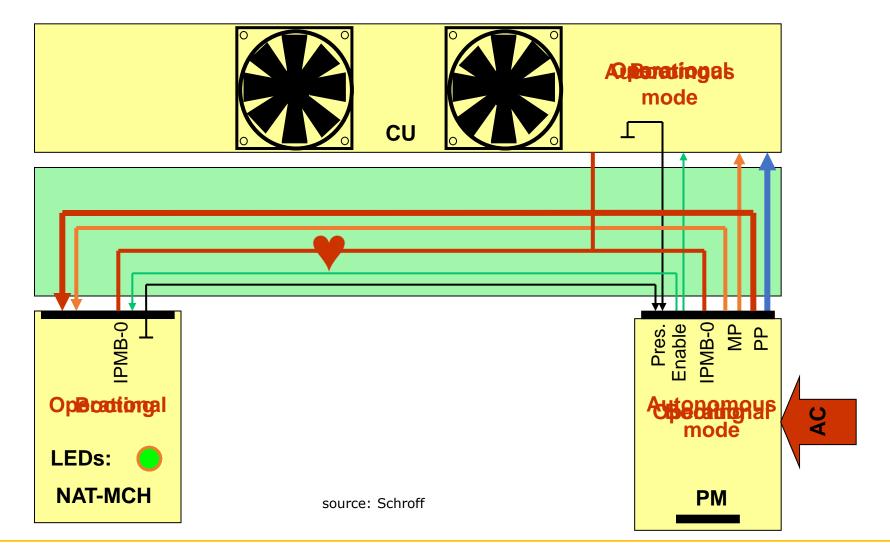
- About N.A.T.
- From ATCA to MTCA two well-connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

Management Why do we need it?

- "Who" is in my system?
 - i.e. list of devices (aka "FRU" for Field Replaceable Unit)
- What capabilities does the FRU have?
 - i.e. active connections (AMCs) or RPMs (CUs)
- How healthy is my system?
 - i.e. sensors for current, voltage, temperature
 - i.e. events
- How can I talk to my FRUs?
 - i.e. manipulation of sensors
- How can I service my system?
 - i.e. hot-swap FRUs



- About N.A.T.
- From ATCA to MTCA two well-connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?



Management in MTCA FRU M states

- ATCA and AMC specs define FRU states, aka "M states"
 - Activation
 - FRU proceeds to state M4
 - Deactivation
 - FRU proceeds to state M1
 - Error (coms lost)
 - FRU moves to state M7
- MCH decides if and when module can reach M4
- MMC uses a state machine to control hot-plug/hot-swap

Useful CLI commands

NAT-MCH Gen3

- show_ekey
- show fru
- show_fruinfo <fru_id>
- show_cu
- show_pm
- show sensorinfo <fru id>

NAT-MCH Gen4

- print ekey
- print fru
- print fruinfo <fru id>
- print cu
- print pm
- print sensorinfo <fru_id>

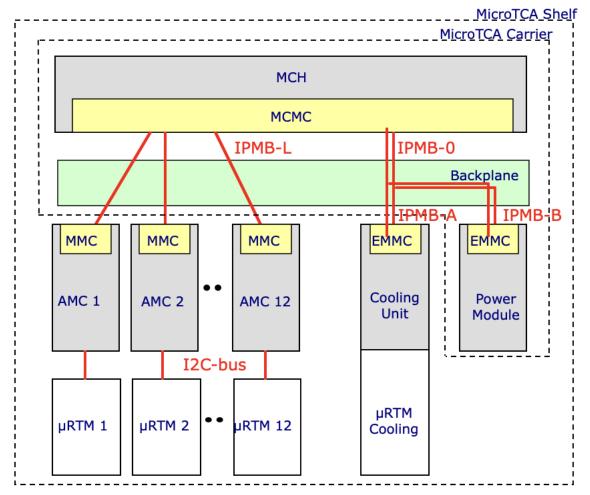
- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

Management in xTCA What is behind

- Idea of management:
 - Hardware supervision by software (remote control and monitoring)
 - Intelligent handling of events and actions
 - Abstraction of hardware functionality
 - Operating system independent
 - => I²C (Inter Integrated Circuit): 2-wire, multi-master cabaple bus
 - => IPMI (Intelligent Platform Management Interface) protocol
 - => RMCP (Remote Management Control Protocol)

Management in MTCA Physical Connections And Controllers

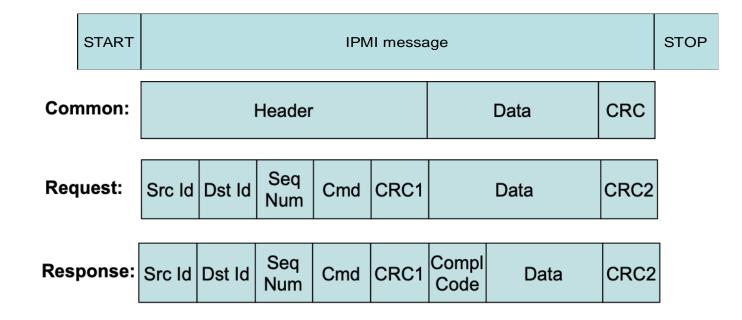
IPMB-L

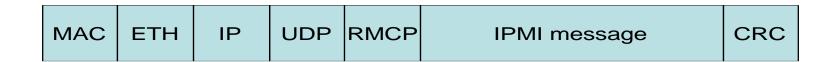

- connects the MCMC on the MCH to the MMC on the AMC Modules
- radial architecture

• IPMB-0.1

- connects the MCMC on the MCH to the EMMC on the PMs and CUs
- bussed architecture

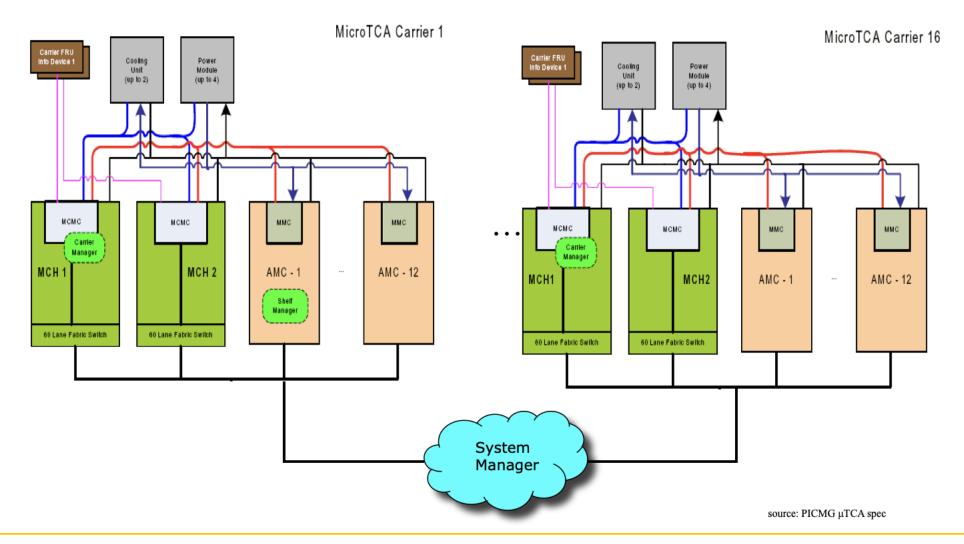
I2C-bus


- connects the AMC to its μRTM
- the μRTM is treated as managed FRU of the AMC

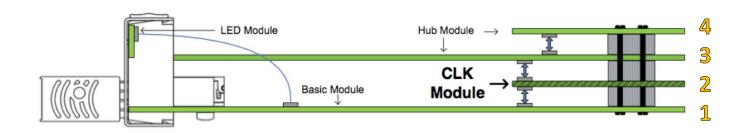


Management in xTCA IPMI

IPMI protocol

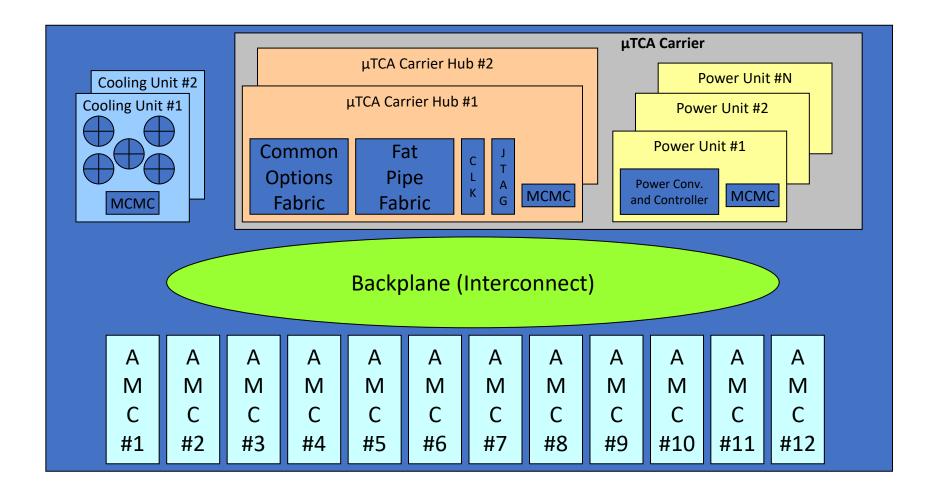


• RMCP:



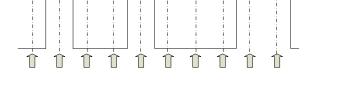
Management in MTCA Management Structure

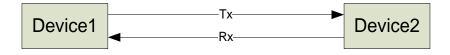
MTCA Carrier Hub (MCH) Adaptable to application demands

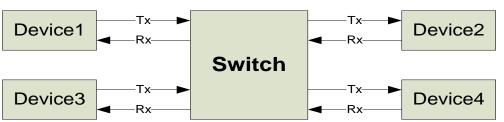


- Base Module: base switch for all AMC slots and management: carrier manager, shelf manager, system manager
- Clock Module for CLK #1-3 to all AMC slots
- 3. Fat Pipe Hub Module: fat pipe switch, signals to AMCs #1-6
- 4. Fat Pipe signals to AMCs #7-12

Excursus: fat pipes and clocks within a MicroTCA system






Excursus: fat pipes

- Bits are transmitted one after the other over single data line
- 8B/10B Coding: every data byte (8bit) is transformed to 10bit symbol that contains enough transitions

- Clock is recovered from serial stream
- Bidirectional transmission via dedicated Tx and Rx lines
 - One Tx/Rx pair is called "Lane"
- Multiple Devices interconnect by switches

Excursus: fat pipes within a MicroTCA system

- Fat pipes aka fabrics
- Defined by PICMG AMC.x series
 - AMC.0 Base Specification
 - AMC.1 PCI Express (PCle): gen 1, gen 2, gen 3 (gen 4)
 - AMC.2 Ethernet: 1GbE, XAUI, 10GbE, 40GbE
 - AMC.3 Storage (SAS)
 - AMC.4 Serial RapidIO (SRIO)
- Link width: x1, x2, x4, lanes aka "ports"
- Compatibility between AMC and switch on MCH ensured by e-keying
- All signal levels are LVDS => incompatibility could not cause damage

Che

show_li:
AMC 1
AMC 2
AMC 2
AMC 2
AMC 2
AMC 2
AMC 4
local R
Ether

Ispci O0:00 0 Host bridge: Intel Corneration 2nd Congration Core Processor Family D

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09)

00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09)

00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09)

00:16.0 Communication controller: Intel Corporation 6 Series Chipset Family MEI Controller #1 (rev 04)

00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04)

00:1a.0 USB Controller: Intel Corporation 6 Series Chipset Family USB Enhanced Host Controller #2 (rev 04)

00:1c.0 PCI bridge: Intel Corporation 6 Series Chipset Family PCI Express Root Port 1 (rev b4)

00:1d.0 USB Controller: Intel Corporation 6 Series Chipset Family USB Enhanced Host Controller #1 (rev 04)

00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04)

00:1f.2 IDE interface: Intel Corporation 6 Series Chipset Family 4 port SATA IDE Controller (rev 04)

00:1f.3 SMBus: Intel Corporation 6 Series Chipset Family SMBus Controller (rev 04)

00:1f.5 IDE interface: Intel Corporation 6 Series Chipset Family 2 port SATA IDE Controller (rev 04)

01:00.0 PCI bridge: Integrated Device Technology Inc. Device 808f

01:00.2 System peripheral: Integrated Device Technology Inc. Device 808f

02:08.0 PCI bridge: Integrated Device Technology Inc. Device 808f

03:00.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:00.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:01.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:02.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:08.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:09.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

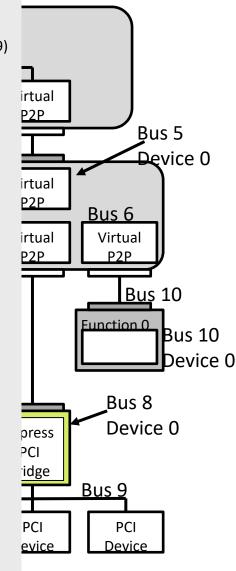
04:0a.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:0b.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:10.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:11.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

04:12.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)


04:13.0 PCI bridge: PLX Technology Inc. Device 8748 (rev ba)

09:00.0 RAM memory: Xilinx Corporation Device 0037

0a:00.0 RAM memory: Xilinx Corporation Device 0037

10:00.0 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

10:00.1 Ethernet controller: Intel Corporation 82580 Gigabit Backplane Connection (rev 01)

Excursus: clocking within a MicroTCA system

- Defined by PICMG MTCA.0 and AMC.0
 - frequency limited to 100MHz by spec
 - from an MCH perspective: CLK1, CLK2, CL3
 - from an AMC perspective: TCLKx and FCLK
 - mapping between CLK1-2 and TCLKx/FLCK provided by the backplane
 - Compatibility between AMC and switch on MCH ensured by e-keying

- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

Management in xTCA What can you do?

- "Who" is in my system?
 - i.e. list of devices (aka "FRU" for Field Replaceable Unit)
- What capabilities does the FRU have?
 - i.e. active connections (AMCs) or RPMs (CUs)
- How healthy is my system?
 - i.e. sensors for current, voltage, temperature
 - i.e. events
- How can I talk to my FRUs?
 - i.e. manipulation of sensors
- How can I service my system?
 - i.e. hot-swap FRUs

Summary

- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

Thank you for your attention!

Heiko Körte

VP, Director Sales & Marketing

heiko.koerte@nateurope.com

N.A.T. GmbH Konrad-Zuse-Platz 9 53227 Bonn, Germany

www.nateurope.com

