CaloClouds: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation

Scientific Computing Seminar DESY, 23.05.2025

E. Buhmann², H. Day-Hall¹, T. Buss², F. Gaede¹, G. Kasieczka²,
W. Korcari², A. Korol^{1,*}, K. Krüger¹, P. McKeown^{1,3}

¹ Deutsches Elektronen-Synchrotron, DESY ² University of Hamburg, UHH ³ CERN

*anatolii.korol@desy.de

Detailed Simulations is Crucial for Connecting Theory with Experimental Observations

Figure from: **Machine learning and LHC event generation**, DOI: <u>10.21468/SciPostPhys.14.4.079</u>

Detailed Simulations is Resource Intensive Task

Figure from: CMS Phase-2 Computing Model: Update Document, http://cds.cern.ch/record/2815292/files/NOTE2022_008.pdf

ATLAS HL-LHC Computing Conceptual Design Report, https://cds.cern.ch/record/2729668/files/LHCC-G-178.pdf

Goal: replace (or augment) most intensive part of simulation with a faster generator based on generative machine learning

A Generative Model Is "Just a Function" That Maps Random Noise to Some Structure

Many Different Generative Models Exist Choose Any You Like

No Matter How Fancy Your Model Is the Performance Depends Heavily on the Representation of the Data It is Given

The Right Data Representation Can Turn an Impossible Problem into an Easy One

Cartesian coordinates Polar coordinates easy to solve with vertical line Ð > х r Figure from: Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville,

https://www.deeplearningbook.org/

impossible task for linear model

Target: Generative Model for Electromagnetic Showers

Case study: International Large Detector (ILD) concept

- Detailed and realistic simulation model
- Optimized for Particle Flow (PandoraPFA):
 - High granularity calorimeters
- Same technologies are widely planned for future experiments: e.g. HL-LHC, e⁺e⁻ Higgs Factories
- Presents challenges for a realistic use case

Dataset Preparation

Exploiting Geometrical Symmetries of the Detector

Shower Development is Consistent Across Regions with Identical Material Structure

Image Representation

Previous Studies Relay on Fixed Grid Representation

One to one mapping from detector cells to a regular grid

Problems with Image Representation of the EM Showers ILD ECAL Layers Structure

Problems with Image Representation of the EM Showers ILD ECAL Layers Structure

Problems with Image Representation of the EM Showers Staggering Effect

Models have to learn not only EM shower properties, but also geometry "artifacts", like staggering effect

Point Cloud Representation of the EM Showers

To address potential issues from irregular (realistic) cell geometry, one could use much higher resolution

- GEANT4 Steps, ultimate resolution
- Detached from detector layer geometry
- Require preprocessing step to reduce number of spacepoints

Photon Energy: 90 [GeV] Event: 4 Time step: 0.98246 [ns]

Point Cloud Representation of the EM Showers Data Preprocessing

Simple Trick to Simplify the Objective

Applying a layer-wise **geometrical offset** to showers entering at an angle, aligning them as if they had an orthogonal impact 2000 2000 19501950 . .. [mm] mm 1900 1900N N 1850 1850 1800 1800 -200-200200 200 0 Х mm mm Advantages: smaller box and a simplified training objective

Model Architecture

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u> **CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation**, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

3 Steps Pipeline

Step1: Normalizing Flow Model

Normalizing Flow Model Generates Low Level Shower Observables

Step2: Diffusion Model

CaloClouds3 Step2: Diffusion Model

Step3: Calibration and Postprocessing

Step3: Calibration and Postprocessing

Integration into Simulation Chain

DDFastShowerML

Generic library for running ML-based fast sim models in DD4hep

Algorithm 1 Pseudocode illustrating the order of operations for the core components of the DDFastShowerML library.

- 1: **if** *Trigger*.checkTrigger(track) == True **then**
- 2: Kill full simulation of particle
- 3: localDir = Geometry.getLocalDir(track)
- 4: inputs = *Model*.prepareInputs(track, localDir)
- 5: outputs = *Inference*.runInference(inputs)
- 6: localSPs = *Model*.convertOutput(track, localDir, outputs)
- 7: globalSPs = Geometry.localToGlobal(track, localSP)
- 8: for (sp in globalSPs) do
- 9: HitMaker.makeHit(sp, track)
- 10: end for
- 11: else
- 12: Full simulation of particle with GEANT4

13: end if

Algorithm from:

Development and Performance of a Fast Simulation Tool for Showers in High Granularity Calorimeters based on Deep Generative Models,

Peter McKeown,

DOI: 10.3204/PUBDB-2024-01825

Figure from:

Development and Performance of a Fast Simulation Tool for Showers in High Granularity Calorimeters based on Deep Generative Models, Peter McKeown, DOI: 10.3204/PUBDB-2024-01825

DDFastShowerML

Generic library for running ML-based fast sim models in DD4hep

Algorithm 1 Pseudocode illustrating the order of operations for the core components of the DDFastShowerML library.

- 1: **if** *Trigger*.checkTrigger(track) == True **then**
- 2: Kill full simulation of particle
- 3: localDir = *Geometry*.getLocalDir(track)
- 4: inputs = *Model*.prepareInputs(track, localDir)
- 5: outputs = *Inference*.runInference(inputs)
- 6: localSPs = *Model*.convertOutput(track, localDir, outputs)
- 7: globalSPs = *Geometry*.localToGlobal(track, localSP)
- 8: for (sp in globalSPs) do
- 9: HitMaker.makeHit(sp, track)
- 10: end for
- 11: else
- 12: Full simulation of particle with GEANT4

13: end if

Algorithm from:

Development and Performance of a Fast Simulation Tool for Showers in High Granularity Calorimeters based on Deep Generative Models,

Peter McKeown,

DOI: <u>10.3204/PUBDB-2024-01825</u>

Figure from:

Development and Performance of a Fast Simulation Tool for Showers in High Granularity Calorimeters based on Deep Generative Models, Peter McKeown, DOI: 10.3204/PUBDB-2024-01825

DDFastShowerML

Generic library for running ML-based fast sim models in DD4hep

50 GeV photon shower generated with CaloClouds3 in the ILD ECAL

Benchmarks

Optimal Generators Reference

- Cell-level readout
- Common approach, used by e.g. BIB-AE
- Regular grid

- x3 lateral resolution, x9 cells
- Used by L2LFlows model
- Regular grid

- Geant4 steps, highest resolution
- Used by CaloClouds model (with additional clustering)
- Point cloud representation

Radial Profile

Longitudinal Profile

Hit Energy Spectrum

Radial Profile

> 90% of the shower content

Occupancy

Energy Distribution

Linearity

Energy Resolution

Di-Photons Reconstruction Benchmark

Di-Photon Reconstruction Benchmark provides a direct physically relevant quantification of model performance

Timing

Possible Extensions

Hadron Showers

POC for Pion Showers in Combined ECAL + HCAL

Geant4

PionClouds

Different Detectors

Adopted for CMS-HGCAL by W. Korcari

It's about time: a Point Cloud Generative Model for the CMS High Granularity Calorimeter, CMS Collaboration. 2025, CMS-DP-2025-016, CERN-CMS-DP-2025-016, <u>CDS:2932517</u>

photon, E = 10-100 GeV, n = 1.57

12.5

13.0 13.5 14.0

time [ns]

12.0

---- Geant4 ---- CC2

Layer 2 (L2)
 Layer 13 (L13)
 Layer 27 (L27)

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u> CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2309.05704</u>

- Traditional fixed grid representations suffer from geometry artifacts, limiting model generalization
- CaloClouds introduces a data representation paradigm that addresses this challenge
- CaloClouds offers a general solution that is easily adaptable to different detector geometries, e.g. CMS-HGCAL
- CaloClouds3 outperforms previous state-of-the-art models while being approximately ~10x faster, and ~100x faster than GEANT4 @ 10-100 GeV range on the same hardware

BACKUP SLIDES

Physics Observables at Different Positions

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, AK, et al. 2023, <u>arXiv:2305.04847</u>

Per-cell energy distribution for the 50 GeV validation (left) data set, created at the same position as the training data set and for a 50 GeV test (right) data set simulated at a different position with the generated point cloud translated to this position

Shower Flow Results

Shower Flow Results

PointWise Net

Center of Gravity

CaloClouds2

Visible Energy and Occupancy

CaloClouds2

Point Cloud Representation of the EM Showers Effects of the Pre-Clustering

Point Cloud Representation of the EM Showers

Effects of the Pre-Clustering

