Odd Higgs, Even Higgs: A View from the Top

Reinhild Yvonne Peters

The University of Manchester

European Research Council Established by the European Commission

The Goal

 Goal: understand the most fundamental building blocks of nature and their interactions

The Goal

- Goal: understand the most fundamental building blocks of nature and their interactions
- Particle Physics: The Standard Model (SM) of Particle Physics!
 - Discovery of a Higgs in 2012: Standard Model technically complete

New Physics?

- We know: Standard model can not be the whole story
- For example:
 - What is dark matter? And dark energy?

New Physics?

- We know: Standard model can not be the whole story
- For example:
 - What is dark matter? And dark energy?
 - Matter antimatter asymmetry?

Early Universe:

New Physics?

- We know: Standard model can not be the whole story
- For example:
 - What is dark matter? And dark energy?
 - Matter antimatter asymmetry?

Quarks U C f S b Forces Z Ŷ W Q Eptons Quarks U C f S b Forces Z Ŷ W Q Eptons

Early Universe:

Our Universe today:

Explanation requires CP violation! (CP=charge parity transformation;

Sakharov conditions)

17.6.2025

CP Violation

- CP violation: Known in the SM in the quark sector
 - Kaons, B and most recently in charm hadrons

- BUT: not enough!
 - Required: baryon-anti-baryon fraction of about ~6x10⁻¹⁰ (WMAP)
 - Quark sector: too small by about 10⁻¹⁶
- \rightarrow where is the rest?

Searches for CP Violation

- Many searches for CP violation ongoing
 - For example, at LHCb to fully explore the quark sector
- So far less explored areas of particular interest: Neutrino and Higgs sector

Searches for CP Violation

- Many searches for CP violation ongoing
 - For example, at LHCb to fully explore the quark sector
- So far less explored areas of particular interest: Neutrino and Higgs sector
- Neutrino sector:

MANCHESTER

Possible CP-violating phase in PNMS matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13} e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Aim of upcoming experiments like DUNE to probe for CP violation in neutrino sector
- Higgs sector: most recently discovered fundamental particle
 - Lots of room for unknowns!

The Higgs

- Higgs field: gives mass to W & Z bosons
 - "Mexican Hat Potential"
- Higgs Boson: Only known fundamental scalar (spin 0) particle
- CP-even in SM
- Discovered in 2012 by ATLAS & CMS

The Higgs

- Higgs field: gives mass to W & Z bosons
 - "Mexican Hat Potential"
- Higgs Boson: Only known fundamental scalar (spin 0) particle
- CP-even in SM
- Discovered in 2012 by ATLAS & CMS
- Coupling depends on mass of particles
 - Coupling of about 1 to top quark
 - Special role of the top quark for electroweak symmetry breaking?

- Heaviest known elementary particle!
 - About 172.5 GeV = 3.07*10⁻²² grams
 - More than 1 million times more heavy than electrons!
 - About as heavy as a gold atom but point-like!

- Heaviest known elementary particle!
 - About 172.5 GeV = 3.07*10⁻²² grams
 - More than 1 million times more heavy than electrons!
 - About as heavy as a gold atom but point-like!
- Extremely short life time
 - About 10⁻²⁵ seconds
 - Much shorter than hadronization time

- Heaviest known elementary particle!
 - About 172.5 GeV = 3.07*10⁻²² grams
 - More than 1 million times more heavy than electrons!
 - About as heavy as a gold atom but point-like!
- Extremely short life time
 - About 10⁻²⁵ seconds
 - Much shorter than hadronization time
- Allows to study a bare quark
 - Quarks always occur in bound states (like protons)
 - Top quark decays faster than the binding time
 - Only free quark!

- Heaviest known elementary particle!
 - About 172.5 GeV = 3.07*10⁻²² grams
 - More than 1 million times more heavy than electrons!
 - About as heavy as a gold atom but point-like!
- Extremely short life time
 - About 10⁻²⁵ seconds
 - Much shorter than hadronization time
- Allows to study a bare quark
 - Quarks always occur in bound states (like protons)
 - Top quark decays faster than the binding time
 - Only free quark!
- Top quarks do not exist in our every-day nature
 - Need to be produced at colliders with high energies

The Top-Higgs Connection

- Relation of top and Higgs: insight into coupling properties and CP-properties of the Higgs
- CP violation requires CP-odd admixture
- Top-Higgs:
 - Highest coupling \rightarrow deviation from 1 would indicate new physics
 - Short lifetime: spin information transferred to decay products
 → access CP information of Higgs

The Top-Higgs Connection

- Relation of top and Higgs: insight into coupling properties and CP-properties of the Higgs
- CP violation requires CP-odd admixture
- Top-Higgs:
 - Highest coupling \rightarrow deviation from 1 would indicate new physics
 - Short lifetime: spin information transferred to decay products
 → access CP information of Higgs

ttH and tH

- Direct access to top-Higgs Yukawa: tt
 tH and tH
- tH: also access to sign of Yukawa coupling

Top-Higgs Yukawa and CP

• Effect of CP on Lagrangian:

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

- Parameters:
 - y_t: Yukawa coupling
 - κ_t': coupling modifier
 - α: CP-mixing angle

 - ψ_t : top quark spinor field
 - γ_5 : Dirac matrix

Top-Higgs Yukawa and CP

• Effect of CP on Lagrangian:

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$$

- Parameters:
 - y_t: Yukawa coupling
 - κ_t': coupling modifier
 - α: CP-mixing angle

 - ψ_t : top quark spinor field
 - γ_5 : Dirac matrix

Eur. Phys. J. C 75, 267 (2015)

- Inclusive cross section sensitive to CP odd admixtures
- Extra sensitivity: use strength of sensitive observables

- Higgs: spin 0
- Top: fermions \rightarrow spin 1/2

- Higgs: spin 0
- Top: fermions \rightarrow spin 1/2

- Observables sensitive to spin structure provide extra CP information!
- Example angular difference between top-quarks

- Observables sensitive to spin structure provide extra CP information!
- Example angular difference between top-quarks
- Experimental measurements: explore cross sections and observables in tH and ttH

Required Tools

1. Somewhere to produce tt
 The LHC

LHC: The highest Energies

- LHC: Start 2009
 - Energies like 10⁻¹³ 10⁻¹⁴ seconds after big-bang!
 - Currently: 13.6 TeV
- Some LHC key data:
 - 27km ring
 - ~100m underground
 - 1232 dipole magnets to keep protons in their orbit
 - Further magnets for focusing
- Magnets get cooled to
 1.9 Kelvin (-271.25 Celsius)
 - \rightarrow colder than outer space (2.7 Kelvin)
 - \rightarrow the LHC is the coolest ring in the universe!

- 1. Somewhere to produce tt
 The LHC
- 2. Something to enhance signal over background:
 - Machine Learning

Machine Learning

- Techniques to optimize event classification, object predictions, ...
- Deep learning with one input feature vector
 - BDTs
 - NNs

. . .

- Deep learning with set of feature vectors as distinct objects
 - Transformers
 - GNNs

• • • •

- 1. Somewhere to produce tt
 The LHC
- 2. Something to enhance signal over background:
 - Machine Learning
 - b-tagging

B-Tagging

- Important tool to increase purity of processes with top quarks
- b-hadron: travels some millimeters before it decays
 - Displaces tracks, secondary vertices

B-Tagging

- Important tool to increase purity of processes with top quarks
- b-hadron: travels some millimeters before it decays
 - Displaces tracks, secondary vertices
- Use of sophisticated tools, for example transformer

B-Tagging

- Latest b-tagger: GN2
- Very good identification of b-jets
- Differentiation between b-jets and c-jets
 - Important for some spin-related analyses, $H \rightarrow c \bar{c}$ analyses, ...

Required Tools

 $v. \overline{a}'$

b

- 1. Somewhere to produce tt
 The LHC
- 2. Something to enhance signal over background:

 W^+

- Machine Learning
- b-tagging

Event Reconstruction

- Goal: reconstruct Higgs/Top 4-vectors
- Detector: only final state objects can be reconstructed
 - Object pairings unknown
 - Neutrinos not detected

Event Reconstruction

- Goal: reconstruct Higgs/Top 4-vectors
- Detector: only final state objects can be reconstructed
 - Object pairings unknown
 - Neutrinos not detected

MANCHESTER

Event Reconstruction

- Goal: reconstruct Higgs/Top 4-vectors
- Detector: only final state objects can be reconstructed
- Object pairings unknown Neutrinos not detected Various tools on the market For example GNN-based HyPER for
 - Performance in tt: best on the market

Analysis Strategy

Step 1: choose process and final state

Analysis Strategy

Step 1: choose process and final state

Step 2: Model backgrounds and enhance signal fraction

Analysis Strategy

Step 1: choose process and final state

Step 2: Model backgrounds and enhance signal fraction

Step 3: Fit to observables; set limits

Choice of Final States

- Balance of sizable signal and manageable background
- tt pair: top decay leptonically or hadronically
 - Determines dominant backgrounds

MANCHESTER 1824

Choice of Final States

- Balance of sizable signal and manageable background
- tt pair: top decay leptonically or hadronically
 - Determines dominant backgrounds
- Main processes analysed so far:
 - $t\bar{t}H$ with $H \rightarrow \gamma\gamma$
 - Pro: very clean signal
 - Con: small Higgs branching fraction
 - t̄tH with H \rightarrow W+W- and $\tau^+\tau^-$
 - Pro: decent Higgs branching fractions, manageable background
 - Con: CP violating effects more likely expected in coupling to fermions

• ttH with $H \rightarrow b\bar{b}$

- Pro: Largest Higgs branching fraction, extra motivation for 3rd generation fermion couplings in new physics models, e.g. maximally symmetric 2HDMs
- Con: large background from ttbb

t̄tH, H→γγ in ATLAS

- Signal enrichment: require two isolated photons
 - Separation of tt decays into leptonic (>0 leptons) and hadronic (0 leptons)
 - m_{yy} close to Higgs mass
- Reconstruction of top quark candidates using "Top Reco BDT"
 - Identification of top candidates
- 2D BDT by training two independent BDTs:
 - BDT to separate signal from background
 - BDT to separate CP-even from CP-odd ttH and tH
 - Use of kinematic and angular observables as input

Phys. Rev. Lett. 125 (2020) 061802

tīH, H→yy in ATLAS

Result: exclusion of pure CP-odd coupling at 3.9 σ @95%CL

Phys. Rev. Lett. 125 (2020) 061802

Yvonne Peters

MANCHESTER 1824

tīH, H→ɣɣ in CMS

- Signal enrichment: require two isolated photons
 - Separation of tt decays into leptonic (>0 leptons) and hadronic (0 leptons)
- Training of BDT to separate ttH from background
- Training of CP-odd versus CP-even BDT in 4 categories
 - Using kinematic variables and b-tagging scores
 - Split into 3 bins
- Fit of m_{yy} in all categories

Phys. Rev. Lett. 125, 061801 (2020)

Result: exclusion of pure CP-odd coupling at 3.2 σ @95%CL

Phys. Rev. Lett. 125, 061801 (2020)

t**t**H multilepton in CMS

• $H \rightarrow VV$ and $\tau\tau$ decays

- Categorization: 2 same-sign leptons + 0 or 1τ ; 3 leptons + 0τ
- Multivariate methods for ttH & tH signal versus background
- CP-sensitive BDT trained in each channel

t**t**H multilepton in CMS

Likelihood fit over various categories

JHEP 07 (2023) 092

t**t**H multilepton in CMS

Result: Exclusion of pure CP-odd Higgs with 2σ at 95% CL

JHEP 07 (2023) 092

ttH in CMS combined

Result: exclusion of pure CP-odd with 3.7σ at 95% CL

JHEP 07 (2023) 092

tt̄H, H \rightarrow bb̄ in ATLAS

- Channels: tt
 tH with 1 and 2 leptons + boosted region
- Signal enrichment using reconstruction and classification BDTs
 - Reconstruction BDT: assign jets to Higgs or top decay
 - Used as input to classification BDT & to construct CP-sensitive observables
 - Classification BDT: separate tt
 H signal versus backgrounds
- CP-sensitive observables:
 - L+jets:

$$b_2 = \frac{(\vec{p}_1 \times \hat{z}) \cdot (\vec{p}_2 \times \hat{z})}{|\vec{p}_1| |\vec{p}_2|} \propto d\phi_{t\bar{t}}$$

Dilepton:

$$b_4 = \frac{(\vec{p}_1 \cdot \hat{z})(\vec{p}_2 \cdot \hat{z})}{|\vec{p}_1||\vec{p}_2|}$$

p₁, p₂: momenta of top quarks z: direction of beam axis

t
t<code>H</code>, <code>H</code> \rightarrow <code>bb</code> in <code>ATLAS</code>

- Separation into regions
- Fit over all regions

ttH, H→ bb in ATLAS

Fit over CP-sensitive observables

[†] normalised to data yield

//// Unc. (Total)

= ttH + tH[†] (0°)

Data

0.5

 $t\bar{t}H + tH^{\dagger}$ (90°)

Data Pred

1.0

 b_4

1.0 0.5<u>⊢</u> –1.0

-0.5

Othe

tī + liaht

tt+ ≥ 1c

 $t\bar{t} + \ge 1b$

tTH + tH

0.0

Phys. Lett. B. 849 (2024) 138469

17.6.2025

Events / bin width

200

150

100

50

n 1.5 Data Pred

1.0

0.5^E

ATLAS

Dilepton

SR,^{≥4j, ≥4b}

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^-$

-0.5

Yvonne Peters

0.5

1.0

b4

0.0

tt̄H, H \rightarrow bb̄ in ATLAS

• Result: $\alpha = 11^{+52}_{-73}$

t
t<code>H</code>, <code>H</code> \rightarrow <code>bb</code> in CMS

- Measurement of ttH and tH cross section
- Not dedicated measurement of CP structure, but interpretation in terms of CP structure

t
t<code>H</code>, <code>H</code> \rightarrow <code>bb</code> in CMS

 $H \rightarrow bb$

 $H \rightarrow WW/\tau$

- Measurement of ttH and tH cross section
- Not dedicated measurement of CP structure, but interpretation in terms of CP structure
 CMS
 138 fb⁻¹ (13 TeV)
- Combination with other channels: $\alpha < 67^{\circ}$ at 95% CL

tH in ATLAS

New exciting ATLAS result coming out soon! (~ weeks)

4 Tops

- tttt: Rare process (12fb)
 - involving all SM interactions
 - Enhanced cross section in many BSM scenarios
- Sensitive to magnitude and CP properties of top-Higgs Yukawa coupling
 - Independent of Higgs decay

4Top in CMS

- Channels: same-sign dilepton and multilepton
 - Smaller branching fractions, but also smaller backgrounds
- Use of BDTs in different channels to enhance signal discrimination

4Top in ATLAS

- Same channels as CMS
- Use of GNN for signal/background discrimination

4Top Observation!

- First observation of 4top production by ATLAS & CMS!
- SM prediction: 12.0±2.4fb

Phys. Lett. B 847 (2023) 138290

Eur. Phys. J. C 83 (2023) 496

- Observed cross sections larger than SM prediction
 - Intriguing: Statistics or physics beyond the standard model?

MANCHESTER 1824

4Top and Top-Higgs

- $\sim 10\%$ of 4top process due to Higgs interaction
- Can interpret cross section in terms of Yukawa coupling and CP
 - Less stringent limits, but independent of non-top Higgs decay model

Eur. Phys. J. C 83 (2023) 496

CP violation in Top-Higgs: The Future

Many avenues proposed by theorists for further improvements

 Optimised value 	ariables oupling Machine	
 Machine lear 	ning the top Yukawa Co	are Learnin
Boosting probes of CP vie with	blation in the constraining the CP structure $T_{arXiv:2405.16499}$ with a global LHC fit, the	Leture of Higgs-fermion
Constraining CP -viol interaction using mac	ation in the Higgs–top-quark hine-learning-based informa	electron EDM and baryogenesis arXiv:2211
arXiv:2110.10177	g saled interence	-211.00845
	Determining the CP Property of $ht\bar{t}$	
		ling via a Novel Jet Substructure Observable arXiv:2211.00845

CP violation in Top-Higgs: The Future

Many avenues proposed by theorists for further improvements

 Optimised value Machine learned Boosting probes of CP viole With T 	riables hing ation in the top Yukawa coupling Machine Gamma A A A A A A A A A A A A A	Learning the Higgs-Top CP Phase www.2110.07635
Constraining CP-viola interaction using mach arXiv:2110.10177	tion in the Higgs–top-quark nine-learning-based inference	ectron EDM and baryogenesis arXiv:2211.00845
	Determining the CP Property of $ht\bar{t}$ Couplin	
 Various other Direct search 	searches sensitive to CP es: 2HDM searches	g via a Novel Jet Substructure Observable arXiv:2211.00845

- CP-odd Higgs bosons
- Indirect approach: EFT

CP, top-Higgs and EFT

- Assuming new physics at much higher energies: effective field theory approach
 - Model independent
- SMEFT:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{d>4} \sum_{i}^{N_d} \frac{C_i O_i^{(d)}}{\Lambda^{d-4}}$$

- C: Wilson coefficient
- O: operator
- Λ : scale

Contribution to physical observables X

$$X_{\text{SMEFT}} = X_{\text{SM}} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} X_{i}^{\text{int}} + \sum_{ij} \frac{C_{i}C_{j}}{\Lambda^{4}} X_{ij}^{\text{quad}} + \mathcal{O}(\Lambda^{-4})$$

From interference with SM

 Total cross section: CP-even observable; sensitive to CP-odd coupling at quadratic order

CP, top-Higgs and EFT

- Construction of CP-sensitive CP-odd observables for ttH and tH
 - Sensitive to CP-odd couplings at linear order
- EFT operators related to CP structure:

$$\begin{split} \mathcal{L}_{h\bar{t}t} &= -\frac{m_t}{v} \bar{t} (\kappa \cos \alpha + i \gamma_5 \kappa \sin \alpha) th, \\ \kappa \cos \alpha &= 1 - \frac{3v^3}{2\sqrt{2} m_t} \frac{C_{t\varphi}}{\Lambda^2}, \quad \kappa \sin \alpha = -\frac{3v^3}{2\sqrt{2} m_t} \frac{C_{t\varphi}^I}{\Lambda^2}. \end{split}$$

C_{t\varphi}: related to operator between top and Higgs field

V. Mirales, YP, E. Vryonidou, J. Winter, arXiv:2412.10309

CP, top-Higgs and EFT

- Assuming 300 fb⁻¹
- tH input needed to resolve degeneracy

V. Mirales, YP, E. Vryonidou, J. Winter, arXiv:2412.10309

Summary

- Top-Higgs joined the hunt for CP violation!
- Main processes: tt
 tH
 and tH
 - With extra insight from 4top processes
- ATLAS & CMS: exclusion of pure CP-odd top-Higgs coupling
 - But: CP violation only requires admixture of CP-odd Higgs
- The future is bright
 - New LHC data (Run 3) set still to be explored
 - Various ideas for improvements of sensitivity

BACKUP

4Top Observation ATLAS

certainty source $\Delta \sigma$ [fb]		$\Delta \sigma / \sigma [\%]$		
Signal modelling				
$t\bar{t}t\bar{t}$ generator choice	+3.7	-2.7	+17	-12
$t\bar{t}t\bar{t}$ parton shower model	+1.6	-1.0	+7	-4
Other $t\bar{t}t\bar{t}$ modelling	+0.8	-0.5	+4	-2
Background modelling				
$t\bar{t}H$ +jets modelling	+0.9	-0.7	+4	-3
$t\bar{t}W$ +jets modelling	+0.8	-0.8	+4	-3
$t\bar{t}Z$ +jets modelling	+0.5	-0.4	+2	-2
Other background modelling	+0.5	-0.4	+2	-2
Non-prompt leptons modelling	+0.4	-0.3	+2	-2
<i>tīt</i> modelling	+0.3	-0.2	+1	-1
Charge misassignment	+0.1	-0.1	+0	-0
Instrumental				
Jet flavour tagging (<i>b</i> -jets)	+1.1	-0.8	+5	-4
Jet uncertainties	+1.1	-0.7	+5	-3
Jet flavour tagging (light-flavour jets)	+0.9	-0.6	+4	-3
Jet flavour tagging (<i>c</i> -jets)	+0.5	-0.4	+2	-2
Simulation sample size	+0.4	-0.3	+2	-1
Other experimental uncertainties	+0.4	-0.3	+2	-1
Luminosity	+0.2	-0.2	+1	-1
Total systematic uncertainty	+4.6	-3.4	+20	-16
Statistical				
Intrinsic statistical uncertainty	+4.2	-3.9	+19	-17
$t\bar{t}W$ +jets normalisation and scaling factors	+1.2	-1.1	+6	-5
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.4	-0.3	+2	-1
Total statistical uncertainty	+4.7	-4.3	+21	-19
Total uncertainty	+6.6	-5.5	+29	-25

ttH, H to bb ATLAS

Region		Dilep	oton			ℓ+je	ets		
	$\mathrm{TR}^{\geq 4j,\geq 4b}$	$CR_{hi}^{\geq 4j,3b}$	$CR_{lo}^{\geq 4j,3b}$	$CR^{3j,3b}_{hi}$	$\mathrm{TR}^{\geq 6j,\geq 4b}$	$CR_{hi}^{5j,\geq 4b}$	$CR_{lo}^{5j,\geq 4b}$	TR _{boosted}	
Njets			≥ 4		= 3	≥ 6	=	5	≥ 4
@85% @77% @70% @60%	@85%		_				≥ 2	4	
	@77%		_				_		$\geq 2^{\dagger}$
	@70%	≥ 4		= 3		≥ 4			_
	@60%	_	= 3	< 3	= 3	_	≥ 4	< 4	_
N _{booste}	ed cand.		_				0		≥ 1
Fit ob	servable	_		Yield		_	ΔF	R_{bb}^{avg}	-

For tH and tWH: interference between diagrams with

CP-even and *CP*-odd t - H and SM W - H couplings are considered by parametrising the signal yield in each analysis bin (fitted to simulated samples)

$$N_{tH}(\kappa'_t, \alpha) = A {\kappa'_t}^2 c_\alpha^2 + B {\kappa'_t}^2 s_\alpha^2 + C {\kappa'_t} c_\alpha + D {\kappa'_t} s_\alpha + E {\kappa'_t}^2 c_\alpha s_\alpha + F$$

ttH, multilepton, CMS

ttH, H to gamma gamma ATLAS

MANCHESTER 1824

ttH, H to gamma gamma CMS

MANCHESTER 1824

HyPER

Edges, nodes and HyPER structure

$$\mathbf{x}_{i}^{(0)} = (p_{Ti}, \eta_{i}, \phi_{i}, E_{i}, b\text{-tag}_{i}),$$
$$\mathbf{e}_{j \rightarrow i}^{(0)} = \mathbf{e}_{ij}^{(0)} = (\Delta \eta_{ij}, \Delta \phi_{ij}, \Delta R_{ij}, M_{ij}),$$
$$\mathbf{u}^{(0)} = (N_{\text{jets}}, N_{b\text{-tagged}}),$$

