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Notation

This section defines the notation used through the lecture course.

Numbers and Linear Algebra

a, A scalar value, such as a real number or integer
a, A vector spanning a n-dimensional vector space
A, A matrix, occupying the same n-dimensional vector space
A, A tensor
I, Identity matrix with implied dimension
e, Standard basis vector with unit length at position 4, [0,0,1,0,0] for i =3
a, A scalar random variable
a, A vector-valued random variable
A A matrix-valued random variable

Sets and Graphs

A, A set
R, Set of real values
{0,1}, The set containing 0 and 1
{0,1,...,n}, The set of all integers between 0 and n
[a, b], Real interval including a and b
(a,b), Real interval excluding a and b start/end points

Linear Algebra Operations

AT, Trasnpose of a matrix
A® B, Element wise product
det(A), Determinant of matrix A



Calculus

d
d—y, Derivative of y with respect to x
x
dy : — ,
Iz’ Partial derivative of y with respect to x
x
Vv, Gradient of y with respect to x
Vxy, Matrix derivatives of y with respect to X
f(m) : : mXn . n m
e Jacobian matrix J € R of f:R" =R
T

Probability /Information Theory

a Lb, The two random variables are independent
a L bl The two random variables a and b conditioned on ¢, are independent
P(a), Discrete probability distribution
p(a), Continuous probability density function
a~ P, The value ’a’ is a realisation (sampled) of distribution P
E.p[f(z)], Expectation of f(x) with respect to P(x)
Var(f(zx)), Variance of f(x) under the distribution P(x)
)

, Covariance of f(x) and g(x) under P(x)

1 Linear Algebra

Linear algebra is the branch of mathematics concerned with linear equations and maps:
(X1, T2, ..., Tp) — @171 + a2x2 + ... + apxy = b, (1)

where x; is known as the ’wariable’, via their representation in vectors spaces. These concepts
are expressed via vectors and matrix forms for easy manipulation and calculation. The following
chapter is merely a review of linear algebra, which you are free to skip. If you are to skip this chapter,
but would like a cheat sheet to quickly look up the mathematical language and/or concepts, then
I would recommend The Matriz Cookbook by Peterson and Pederson (2006) [1].

1.1 Scalars, Vectors, Matrices, and Tensors

In linear algebra there are several types of mathematical constructs/objects:

e Scalars: A singular number represented by italics, defined by the type of number: [N, R, Z, C].
Which represent the natural set of positive integer, real, all integer, and complex numbers



e Vectors: An array of numbers, indexed by their ordering (z;):

z1
x2

Tn

which space a n-dimensional. Each element depicts a location in the corresponding vector
space, denoted by the scalar values type; e.g. the above vector x € R"™ occupies a vector
space in the real n-dimensional space.

The symbol € represents the element of a
set.

e Matrices: A matrix A is a 2-D array of numbers, meaning each element is indexed by two
values (A; ;). They therefore occupy the space defined by the joint product of the vector
spaces. For example is A € R™ ™ where n/m are the dimensionality of the two vector
spaces comprising the matrix:

Al,l ALQ Lo Al,m
A — Ag,l A272 Lo Ag,m (3)
Api Ao o . . Apm

) )

Similar to how indexing works in common machine learning toolkits, we can index rows (1st
row) and columns (1st column) via Ay ., and A.; respectively.

e Tensors: Similar to a matrix, but with more than two axes, thereby spanning a vector space
of n x m x ... x k. The tensor is denoted by the typeface A, and the element as A; ;:

k k k
Al Afg e A,
vA/n/"?/ A'n/’ﬂ
1 1 1
A.ll ) Ajg - Alm
A= )
i ot
Anm Anm

where in this example the tensor occupies A € R ™*F vector space.

Transpose One relevant mathematical operation on vectors and matrices is the transpose. The
transpose operation of a matrix is the equivalent of a mirror image of the matrix across a diagonal
line. Denoted by superscript 7', the transpose is given by:

AT = A, (4)



for matrices, and for vectors is given by:

I
Z2

Tn |

X == ’ = [xl,.’lj‘z,...,xn], (5)

which is essentially the process of swapping a column vector into a row vector.

Scalar, Vector, and Matrix Addition Pro-
vided that the vectors/matrices have the same shape,
then addition is defined by the element wise addition:

C=A+B, (6)

where C; ; = A; j + B; ;. Similarly, a vector is also
defined via the element wise addition, z = = + y,
where z; = x; + y;. Since vectors/matrices occupy
a vector space, scalar addition is also defined as the
element wise addition: C = A + b where C;; =
Bi,j +b.

1.2 Vector and Matrix Multiplication

The multiplication of two matrices A € R™*™ and
B € R™P is possible if m = [, such that the new ma-
trix C = AB, is given by the production operation:

Cij=> AixBrj, (7)
k

which now occupies a vector space of dimensionality
R"XP

This is in contrast to the element wise product, or
Hadamard product, which is denoted as C = A © B,
which is defined as:

Cij = Ai;Bij, (8)

where ¢ € R™ and j € RP. This means that the
Hadamard product is only defined for matrices of
the same shape.

In the context of your machine learning tool
kits, such as PyTorch/Tensorflow/JAX/...,
the idea of matrix-vector addition is defined
in contrast to mathematics. Specifically,
the addition of a vector @ € R"™ and ma-
trix A € R™** to form a new matrix B:

B=A+a
o
Al,l ALQ 6 o o Al,k as
A1 Aop Ao,
= +
_An,l An,2 An,k
Lan ]
Arg A . o 0 Alg args
A1 Asp . .. Agk agpq
_An,l An,Z CEE An,k A, k41 |

This results in a new matrix B € Rm*(k+1),
and is only possible if n = m. This is often
referred to as broadcasting, and is a purely
deep learning concept not founded in the
paradigm (theoretical framework) of math-
ematics.



Vector multiplication, or inner dot product, is defined
between two vectors of the same dimension (R™).
Such that, the new vector:

" (9)

is given by the element wise product z; = z;y;. In
contrast, the outer dot product, between two vectors
of dimensionality R™ and R™, creates a new matrix:

The Hadamard product is particularly use-
ful for machine learning, in domains such as
image processing, and time series analysis
using recurrent neural networks (e.g. Long-
Short-Term Memory (LST) and Gated Re-
current Units (GRU)). It is also a compu-

A=z®y (10) tational efficient operation - bit of foresah-
dowing here.
r1yy r1y2 - - - T1Ym
_ r2yir T2Yy2 . . . T2Ym (11)
TpYl Tn¥Y2 - - - TpYm

where A € R™™. The resulting matrix is given by the operation A;; = x;y;.

1.2.1 Matrix Operation Properties

Matrix multiplication is:

e Distributive:
AB+C)=AB+ AC, (12)

e Associative:
A(BC) = (AB)C. (13)

However, matrix multiplication is not commutative:
AB # BA, (14)
resulting in the transpose property of matrix products of:

(AB)T = BTAT. (15)

1.3 Identity and Inverse

: Vector/Matrix notation is a powerful tool to express linear systems, as given the title of this
chapter. Specifically, for a system defined by a set of linear equations, such as that of equation 1,
the matrix formulation is simply:

Az =b. (16)

Solving this equation amounts to calculating the elements of A, which can be achieved by matriz
tnversion. This requires the identity matrix I, a matrix that leaves a vector unchanged, and
preserves the n-dimensionality of said vector. Formally, T € R™*"  and:

VeeR" Iz =uw, (17)
allowing us to defined the inverse of a matrix A as:

A'A=1 (18)



Consequently, solving equation 16 can be achieved by the
following steps:
Multiple algorithms exist for finding the in-

Ar=b (19) verse matrix A~!, which can be used to
A Az =A"1p (20) solve the equation multiple times for differ-
I — A-1p (21) ent b vectors (with different values). Un-
fortunately, on a digital computer we can

x=A""b. (22) only represent A~! with finite precision,

and so in software applications often algo-
rithms that make use of b obtain better pre-
cision.

Of course this process depends on the existence of the
inverse of A, where the necessary conditions for said ex-
istence are discussed in the following section.

1.4 Linear Dependence and Span

For the inverse matrix A~! to exist, the linear equation 1, must have a single solution for every
value of b. To analyse how many solutions the equation has, recall that the columns of A specify
the directions we can travel in the vector space from the origin (vector of all zero values), therefore
we can see how many ways a value of b can be reached by some combination of vectors. With this
perspective each element of x defines the amount one moves in the direction of the vector space
basis %, such that:

Ax = ZmiA:7i. (23)

This operation is more formally known as a linear combination, which for a set of vector {U(l), L
is given by multiplying each vector by a scalar coefficient:

Ci 0,
Z 2™ (24)

The span of a set of vectors is the set of all points reachable by the linear combination of basis
vectors. Determining therefore whether Ax = b has a solution, amounts to whether b is in the
span of the columns of A (also known as the column space or range).

Consequently, for the system Ax = b to have a solution for all values of b € R™, it is required that
the column space of A is also apart of R™. This imposes our first condition, that A € R™ must
have at least m columns; i.e. n > m. This is known as a necessary condition, but not a sufficient
one. This is because, it is possible that some of the columns are redundant. Consider a 2x2 matrix
where both columns are identical. As such, the matrix has the same column space as a 2x1 matrix,
which does not span all of R?, since the 2x1 is a real line (R).

This redundancy is referred to as a linear dependence. Specifically, a set of vectors is linearly
independent if there exists no vector in the set {'v(l), e 'v(m)} that can be constructed from the
other vectors. For example, if we add a vector to the set which is a combination of those already
apart of it, then the new vector does not add any new points to the span. This therefore requires
the column space of A € R™ to contain at least m linearly independent columns; this defines both
the necessary and sufficient conditions for a linear system.



Therefore, we are ready to define the inverse solution
to the linear system Ax = b. We re-iterate that the
vector space of the dependent variable & occupies a
R™ vector space. The column space of A € R™ must
contain at least n > m columns, of which there are
m-linearly independent vectors. Since the solution
of the system must have only 1 solution per value
of b, we are therefore left with the requirement that
n = m. Otherwise we could construct a number of
solutions via a set of parameterised vector spaces.

All together, this means that our A matrix must

be square and all columns are linearly independent.
Such a matrix is referred to as non-singular.

1.5 Norms

If A is not square (singular) a solution is
still possible. However, matrix inversion
is not a viable method for solving the sys-
tem. For example one would need to con-
sider dimensionality reduction methods, or
analysing the rank /null space of the matrix;

e.g.:
e Pseudoinverse
e Singular Value Decomposition (SVD)
o Iterative methods

These approaches however are costly from
a computational perspective.

Within the context of vector spaces, the size of a vector is given by its norm, defined by three key

properties:

1. Positive Definiteness: f(x) =0 for = 0.

2. Absolute Homogeneity: f(ax) = af(x)Va € R.
3. Triangular Inequality: f(x +y) < f(x) + f(y).

They are functions that map vectors to non-negative scalar values, and are often interpreted as a
distance between two points in the vector space. A common definition is the LP norm given by:

1/p
||, = (ZI@V‘I”) , (25)

where p € R, and for p > 1. For p = 2, L? is known as the Euclidean norm, which is often denoted
as ||z||.

Similarly, the size of a matrix A, can be obtained by the Frobenius norm:

|Allr = [> A2, (26)
i

which is analogous to the L? norm of a vector.

1.6 Trace Operator

The trace operator is defined as the sum of all diagonal elements of a matrix:

Tr(A) =) A, (27)
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The trace is particularly useful due to specific properties that can be leveraged to simplify calcula-
tions. For example, the inner Frobenius norm of a matrix can be defined using:

|AF|l =/ Tr(AAT). (28)

It is also useful for manipulating linear system expressions via identities, such as:

e Transpose Invariance: The transpose of a matrix is invariant under the trace:

Tr(A) = Tr(AT). (29)

e Cyclic Permutation: A matrix comprised of multiple matrix factors is cyclically invariant:

Tr(ABC) = Tr(CAB) = Tr(BCA) (30)
n n—1
—Tr (H A<i>> =Tr <A<"> 11 A@’)) . (31)

where this property holds even if two matrices have different shapes, e.g. A1) € R"™*™ and
A(Q) c RmXn

1.7 Diagonal Matrix

Diagonal matrices, as per the name, contain non-zero
elements in only the diagonal entries of the matrix:

ij = L ifi= (32) We have made use of the Hadamard opera-
’ 0, ifi # j, tion here, see above.

where one example has already been presented; the
identity matrix I. It is often the case that a square diagonal matrix is denoted as diag(v), since the
diagonal elements of the matrix are given by the vector v. They are particularly useful since a diag-
onal matrix is computation efficient, since one can perform the operation diag(v)x, by multiplying
each element z; by v;:

diag(v)x = v © @. (33)
Of course non-square matrices that are diagonal are also valid, they are typically denoted however
as normal matrices, and can still perform matrix-vector operation as per normal Dx.

1.8 Symmetric Matrix

A symmetric matrix is equal to its transpose:
A =AT (34)

For the topic of machine learning, they often arise from systems where there is a symmetry in the
order of arguments, e.g. a distance measure between two points in a vector space. E.g. the L®
norms are often symmetric on whether you are measuring the distance from i — j, or j — i; i.e.
Aij = Aji-



1.9 Orthogonal Matrix

An orthogonal matrix is a square matrix in which the rows(columns) are mutually orthonormal:
ATA=A"TA=1 (35)

This naturally means that TT = A~!, which is advantagous to ML methods because such a system
is cheap to compute the inverse of.

2 Probability & Information Theory

In this chapter an overview of probability and information theory will be provided.

Probability theory is a mathematical framework on which the idea of quantifying uncertain state-
ments is based. Although there are several probabilistic interpretations, they utilise the same ax-
iomatic principles to express mathematically the idea of a probability. The most common of these
interpretations is that of Kolmogorov’s axioms [2]. Whilst probability theory allows us to make
uncertain statements, information theory forms the foundation on which we quantify the amount
of uncertainty in a probability distribution. Together these two concepts formulate a framework in
which machine learning/artificial intelligence learns to reason.

2.1 Random Variable

A random variable is a mathematical formulation of a quantity that depends on random events.
It is denoted as a capital roman type faced letter, such as X, that is a measurable function from
a sample space €2 to an event space E; X : Q — E. The sample space 2 denotes the space of all
possible states, and the event space E is the outcome of each state. For example, in a coin flip, the
sample space is the set {Heads, Tails}, and the event space is assigned values {+1,—1}. To denote
the values that an event take on from a random variable, one uses the notation:

x~X, (36)

where the lower case x is a value of the random variable (e.g. £1). The question you should now
be asking is what defines the distribution of values that = can take?

2.2 Discrete Variables & Probability Mass Functions

The probability distribution, over discrete variables is described the concept of a probability mass
function (PMF). Probability mass functions are denoted by a roman capital P. The PMF maps
from the state in sample space {2 to the probability of the outcome x in the event space E:

P(X =z) = P({w € QX (w) € S}), (37)

where w C () is a subset of states in the sample space that give rise to the subset of outcomes
S C FE in the event space.



The PMF conforms to what is known as the Kolmogorov axioms of probability theory. Specifically:

Axiom 1 - Positivity : P(E) € R, P(E) >0V E€ F
Axiom 2 - Unit Measure : P(Q2) =1
Axiom 3 - o-additiivity : P(, E;) = ), P(E;),

(2

where we can now introduce the o-algebra F' in order to formally define the probability triple
(0, F, P).

For example, consider a single discrete random variable X, with k different possible states. The
probability of selecting xj; ~ X is uniformly equivalent, meaning that the PMF is:

P(X =) = -, (38)

| =

for all possible 7 states. This meets the requirements of a PMF, because:

ZP(XZQZZ'):Z;:L (39)

is unit normalised.

2.3 Continuous Variables & Probability Density Functions

In the case of continuous variables, the probabilistic distribution of random variable values is
dictated by a probability density function (PDF); denosted by lower case roman p(x). Similarly to
the discrete case, the Kolmogorov axioms apply, with the notational difference only of:

Axiom 1 - Positivity : Vz p(z) >0

Axiom 2 - Unit Measure : [ p(z)dz = 1.

It should be carefully noted that the PDF p(x) does not correspond to the state, rather it provides
the probability of landing in the infinitesimal region with volume dx. With this in mind, the
example of a uniformly discrete set of states in Section 2.2, can be cast into the continuous limit,
by asking what the probability the x lies in some set S. Where for a uniform distribution the set
lies in the interval range S € [a, b]. Therefore:

b
P(X =x) —/ p(z)dz, (40)

where the PDF of a uniform distribution is p(x;a,b) = ﬁ. We have used the conditional notation
of ’;” to denote that the function p(z) has some configurable parameters (a,b) that define the shape
and characteristics of the distribution.

2.4 Marginal Probability
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It is often the case that the system is defined by a set of random
variables (X,Y"), with a joint probability distribution given by
P(X,Y). The probability of obtaining a specific value of z,
irrespective of the value y, i.e. the probability distribution over
a subset of the dependent variables, is known as the marginal
probability distribution. This is more formally stated as:

VeeX, P(X=2)=) P(X=zY=y), (41
Yy

which is known as the sum rule. For continuous variables, the
sum is replaced by the integral:

p(x) = / p(x,y)dy. (42)

2.5 Conditional Probability

It is also often the case that we are interested in the probability of an event with some value
X =z, given a second random variable Y = y. This is known as a conditional probability, which is

formulated as:
P(X =zY =y)

PX=x)
where P(X = z|Y = y) is the conditional probability. It should be noted that a conditional

probability is only defined for P(X = x) > 0, since a conditional probability of an event that never
happened is impossible.

PX=z|lY =y) = (43)

2.6 Chain Rule of Conditional Probabilities

The joint probability over n random variables, denoted as 2 for i € [1,n], can be decomposed
into the product of conditional probabilities over a single variable:

n k—1
PW, 2@ =T P®| ) 2D). (44)
k i=1

This is known as the chain rule, or product rule, of probability. For simplicity, and as an illustrative
example, we consider the simple case of three random variables a, b, c:

P(a,b,c) = P(alb,c)P(b,c) = P(alb,c)P(blc)P(c). (45)

2.7 Independence and Conditional Independence

Two random variables X and Y, are independent if the probability distributions can be expressed
as the product of two marginal distributions:

Ve € X, y€Y, p(X =2,V =y)=pX =z)p(Y =vy). (46)

11



Similarly, for two random variables X, and Y conditionally independent on a third random variable
Z, then the conditional independence can be factorised over the conditional variable Z:

Ve € X,yeY,zeZ, pX=a,Y=ylZ=2)=pX =z|Z=2))pY =y|Z ==z). (47)

In both cases, a short hand exists to denote the independence:
pX =2,Y =y) =pX =2)p(Y =y) =z Ly (48)
pX=a,Y=ylZ=z)=pX=z|Z=2pY =y|Z =2):—z Lyl (49)

2.8 Expectation, Variance, and Covariance

The expectation, or expected value, of a function f(x) with respect to a probability distribution
P(X), is given by the mean value of the function at each value of z X drawn from P(z). For
discrete variables, this can be computed by the summation:

Eo~plf(2)] = D P(2)f(x), (50)
x
while for the continuous variables the sum is replaced by the integral formulism:

Eoplf(z)] = / p(2) f(2)dz. (51)

T

Of course the expectation applies to the joint and conditional
probabilities defined in the previous sections. For completeness Note 8
these are defined below for the joint distribution p(z,y):

Exy [/(X,Y)] = / / f (. y)p(e, y)dedy,

conditional probability:

Expy=y [f(X,Y)] =E[f(X,Y)]Y =y] = /f(x, y)p(zly)dz.
It should be noted that the expectation is linear:

Ex|of(z) + Bg(x)] = aEx[f(z)] + BEx[g()], (53)

where «, and 3 are scalars and independent of x.

The wvariance of a random variable is given by:

Var(f(x)) = Ex [(f(z) - Ex[f(2)])?], (54)

such that the standard deviation of the random variable, i.e. the error associated with the varying
nature of X, is given by ox = /Var(.).

The covariance of two random variables X and Y, or a measure of how linearly related the two
variables are, is given by:

Cov(f(2),9(x)) = Exy[(f(x) — Ex[f(=)])(9(y) — Ex[g(v)])], (55)

where for large positive values of covariance the two variables both deviate from the mean together,
and for negative large values, they deviate together away from their respective means, but in oppo-
site directions.

12



2.9 Key Probabilistic Distributions
2.9.1 Gaussian Distribution

The Gaussian, or normal distribution, is likely the most com-
mon used distribution in machine learning, statistics, and in-
formation theory. This is somewhat in part to the central
limit theorem, which states that for a collection of n random
variables, {X1, ..., X}, }, the sum of the random variables will
asymptotically approach a Gaussian distribution as n — oc.

The Gaussian distribution is given by:

2mo? 9252

Nisino®) =\ gmzen (o (e =) (56)

where the two parameters p € R, and o € (0,00), are the
mean and standard deviation of the distribution. In multiple
dimensions (RY), the Gaussian distribution generalises well to
the multivariate Gaussian/Normal distribution:

N(z;p, 2) = \/WL(Z)GXP <—% (@ —p)'=" (2 - N))2> ;

(57)
where p is a vector valued object giving the mean of the distr-
bution for each dimension of &, and X is the covariance matric
of the distribution with shape R%*,

2.9.2 Dirac and Empirical Disitribution

The Dirac distribution is defined as:

oo, ifx =p
0, ifz # u,

meaning that it is zero in the entire domain of x except when identically equivalent to u. It is
a useful distribution, because it assigns all probability mass to a singular point in the z space.
The Dirac function is not an ordinary function, that associates with each x a real valued output;
i.e. a real valued domain to codomain map f : X — R. It is instead known mathematically as a
generalisation function, that is defined in terms of its properties when integrated. Specifically:

/ " S(a)dr =1, (59)

—00

(58)

p(x) = 6(x —p) = {

with a few key properties:
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Scaling/Symmetry: [%_6(az)ds = [ S(p) = L

Distributive product (z —a)"0(z —a) =0

for a constant ¢

Translation: [ f(z)d(x —T)dx = f(T)

Linearity: V z, zf(x) = xzg(z), where f and g are distributions, then f(z) = g(x) + ¢d(x)

It has significant use in machine learning applications, because it defines the empirical distribution

for a finite sample of a random variable X with m entries:

m

P) = > 5w — ),

i=1

which put mass 1/m on each of the m points in the dataset {z1, ...,z }.

2.10 Bayes Rule

Bayes Rule provides a mathematical rule for inverting the con-

ditionality of probabilities, e.g. P(X|Y) and P(Y|X): Note 10
PY|X)P(X)
PX|Y)=—"F7+ 1
exiv) = 25 (61)

It can be derived from the definition of conditional probability.
Specifically:

pap) — PANB)

TR(B) o

where P(AN B) represents the probability that both A and B
are true. Consequently, it is similarly true that:

P(BN A)

P(BIA) = =5 p

(63)

Since P(AN B) = P(B N A), one obtains Bayes theorem.

2.11 Measure Theory & Continuous Variables

(60)

Measure theory is the mathematical study of geometrical measures (e.g. length,area, and volume)
in addition to the concept of mass, magnitude and probability in a vector space. Whilst out of the
scope of this course, it is important to understand one concept of measure theory for continuous
variables. Consider, two random variables X and Y, that are deterministic functions of each other:
y = g(x). In this instance ¢ is a continuous, invertible, and differentiable transformation. As such,

it is natural to think that:
py(y) = palg™" ()

14
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However, this is incorrect. To understand this we will see a simple example, and then a more
concrete generalisation that links to the idea of measure theory. For the simple example, consider
two scalar random variables X and Y that are related via y = /2, and x ~ U(0,1), i.e. we sample
from a uniform distribution for . Under the rule py(y) = p.(2y), we have:

o, ifx ¢ [0,1/2
Py(y) = {1, if € [0,1/2]. (65)

Consequently, the integral of the distribution is given by:

1 12 1
| otwin= [ e =5, (66)

where b = 1,a = 0 are constants of the uniform distribution ¢. It should be immediately obvious
that this violates the second axiom of unit measure for probability theory.

This problem originates from a failure to account for the distortion of the domain space of x by the
function g. If you recall from sub-section 2.3, the probability density function for z, corresponds
to the probability of the value residing in the infinitesimal volume of §z. Since the function
g : X — Y can expand or contract the space, the infinitesimal volume in dy may be larger or
smaller. Consequently, to solve this problem, we must start with conserving the correct quantity;
specifically:

py(9(2))dy| = |pa(x)dx]. (67)
Solving this, we obtain:

pu0) = pels™ ) || (68)
or equivalently:

peli) = pyfata) |17 (69)

In higher dimensions, the derivative generalises to the determinant of the Jacobian matrix, where

Jij = %, and z € R"™ and y € R™ vector spaces:
J

pm(w) = py<g<x))

det <dfg) > ‘ . (70)

2.12 Information Theory

Information theory, a branch of applied mathematics, is concerned with quantifying the amount
of information present in a signal. Its origins stem from the problem of sending messages using
discrete alphabets using a noisy communication channel. For example, radio transmissions using
morse code. Therefore, in this context information theory is useful in constructing optimal codes,
and the length of a message when sampled from a probability distribution. This section is not a
complete review of information theory, but we concentrate on the characterisation of probability
distributions, and/or to quantify the similarity between probability distributions.
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The most basic intuition of information theory is the realisa-
tion that an unlikely event provides more information than a
likely event. In this regard, the unlikely event is more informa-
tive, and thus of more use. Therefore, we want to formulate
information within this context. To achieve this we define
three key criteria:

e Likely events have little information content
e Unlikely events have a lot of information content

e Independent events add information.

To satisfy these three requirements, we define the self-
information of an event X = x:
I(z) = —In(P(x)). (71)

This definition of the information can be used to quantify the amount of information in an entire
distribution, using the ensemble of events m, via Shannon Entropy:

H(X) = Eonp[l(2)] = —Egnp[In(P(2))]. (72)

The intuitive interpretation of Shannon entropy, is that the entropy of the distribution P is equiv-
alent to the expectation of surprise. This is because —In(P) = In(1/P), therefore if P(x) — 1,
then the event offers little surprise, and so the entropy is close to 0. On the other hand, for low
P(x) the unlikely event has a lot of surprise, and with it provides a lot of information, or entropy.
This interpretation gives a lower bound on the number of bits/nats, needed to on average encode
symbols drawn from the distribution P.

With this defined, we are now able to define one of the most significant concepts and useful concepts
in machine learning. The idea of a distance measure, between two distributions P and @, over the
same random variable X:

Dir(P||Q) = Eanp [m (P(a»

@)] = E,p[n(P()) — n(Q(x)), (73)

which is the difference in entropy between the two distributions, know as the Kullback-Leibler
divergence (KL-div). It should be noted that the KL-div is not a true metric. This is because for
a distance measure to be a metric, it must adhere to four key properties:

The distance to itself is 0: d(P,P) =0

The distance is always positive (positivity): d(P, Q) > 0 for P # Q

The distance between the two distributions is symmetric of irrespective of order of calculation:

d(P,Q) = d(Q, P)

The triangular inequality holds: d(P, Z) < d(P, Q) + d(Q, Z), where Z is a third distribution
or point in the vector space.

Since the KL-div does not adhere to the symmetric property it is not a true metric. As such, there
can be drastic consequences of using Dk, (P||Q) or Dky,(Q||P).
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Another important quantity that is closely related to the KL diver-
gence, is the cross-entropy:

H(P,Q) = H(P) + Dx(P||Q) (74)
By p[In(P(2)))] + Eyeplln(P(2)) — n(Q(X))] (75)
~E.p[In(Q(@)] = 3 P(@) n(@Q(x) (76)

It will be shown later how the the Kullback-Leibler divergence,
cross-entropy, and negative log-likelihood, three fundamentally im-
portant measure of similarity are equivalent when training a ma-
chine learning model, i.e. an optimisation problem.

3 ML 101

At its core, machine learning is an algorithm that can learn from data patterns, in order yield some
actionable information. There are many famous quotes about the overarching focus of machine
learning. In my opinion, Mitchell (1997) [3], states it best:

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P | if its performance at tasks in T , as measured by
P , improves with experience E.

In this setup there are three key components to a machine learning algorithm:

Experience ’E’ : The stimulus that drives learning, is the set of examples z € R", or a
dataset D of many examples x = x,,

Task T’ : Given an example x the model f should learn a prediction y = f(x)

Performance P’ : Evaluate the performance of the model f, often via the foundations of
measure theory'; generalisation of geometric distances for a measureable
space (2, F'), such that for a measure M : F' — [0, oc].

A brief description is given below for each of these concepts.

Experience A machine learning algorithm exzperiences a dataset of m data points, each a reali-
sation of a random variable/probability distribution @ ~ X There are two predominant types
of datasets, that in turn define the learning algorithm:

D {{(m(i),y(i)), € R" x R}, :  supervised (77)

{(z®), e R"}, :  unsupervised,

1Said that this would come back later in the notes, see Section 2.12
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where the new additional variable y is a label /target. In the former case, the dataset encourages a
supervised learning algorithm, whilst the latter an unsupervised learning algorithm. In a supervised
learning algorithm, the task is one of classifying each data point according to its label/target. In
unsupervised learning, the goal is to learn useful properties of the distribution, whether it be
explicitly by density estimation, or implicitly via denoising or clustering.

Note 13

Performance The performance of an algorithm is key to determining the optimised solution
obtained during training. The performance measures used are dependent on the problem, and the
algorithm. For example, in a supervised learning classification problem, one might consider the
accuracy with which one correctly predicts the label acc. = N, /N, where N, is the number of
correctly labeled data points, and N the total number of data points in the dataset.

Task The task of the machine learning algorithm can be wide spread with some examples given
below:

e (Classification
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e Regression

Transcription

Anomaly detection

Synthesis/Generative

Denoising

Density Estimation

3.1 Estimators

A point estimator is any function that takes as an argument a dataset of m independently identically
distributed data points, that infers from the ensemble of data a quantity of interested. This quantity
of interest, denoted as @, could be the parameters of a linear equation, or the lifetime of a nuclear
decayipg element. To denote the estimated parameters from the true values, the hat notation is
used, 6:

0 =gxD,...,z™). (80)

The function g¢(.) is not restricted to being of a functional form that must return a value that is
close to the true value of @, nor its range. Whilst this offers substantial flexibility, the quality of the
function is defined by its ability to accurately estimate the true value of 8. This quality is reflected
in the concept of a point estimators bias and variance properties.

3.1.1 Bias

The bias of an estimator is defined as:
bias() = E(f,,) — 6, (81)

where the expectation is over the iid dataset, or random variable from which the samples are
drawn. An estimator 6,,, is unbiased if bias(6,,) = 0, which arises when E(6,,) = 6. More formally,

an estimator 6,, is asymptotically unbiased if lim_ —yoobias(fm = 0, and so lim,, oo E(0,,) = 6.

3.1.2 Example: Gaussian Estimators

Consider a set of samples D = {z1,..., 2, } that are iid, and distributed according to a Gaussian
distribution: )
1 1(x; — /mu
pleisp,0?) = s eXp (—M> : (82)

2o 2 o2

To estimate the mean, we construct the function:
R 1
p=— z; ;. (83)
1=
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To determine the bias of this function, we estimate:

bias(j1) = E[i] - p (84)
_E ;ix]u (85)
- (;L ZE[M) (36)
= (7711 > u) — (87)
=p—p=0. (88)

Therefore, the function we selected, known as the sample mean, is an unbiased estimator of the
Gaussian mean.

However, lets now look at an estimator of the variance o2. We construct first an analogous estimator
to that of the mean, known as the sample variance:

6= 3 (i~ ), (59)

bias(6?) = E[6?] — o (90)
. [; S (0 - W] _o? (o)

= B> (i)~ (- m)?)] - o? (92)

- %E D (i —w)’ —2(ﬂ—u)Z(x—u)+§:(ﬂ—u)2] — o’ (93)
= %E i(w — ) - %(ﬂ — ) (= p) + m(fp - u)2] — o’ (94)
= %E i( —w?| —E[(a- m] o (95)
_ [02 _ n{:a?] —r =Tl g2 —jj, (96)

which is biased. As such, a simple adaptation of the function can be made that yields an unbiased
estimator:

6= 3 = R 6 = > (i~ )R (o7)
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which is outlined in red. This simple adaptation results in the unbiased estimator:
1 m
— Z (zi — ﬂ)2] (98)
i
= o) =07, (99)

m

E[6°] =E

2

therefore the bias is = 02 — 0% = 0, i.e. a perfect estimator.

3.1.3 Variance & Standard Error

The second property that defines the quality of a point estimator, is the degree with which the
estimated parameter 0 varies as a function of the dataset. The variance, defined as:

Var(6,,) = E[(6 — E[6])?], (100)

where one can also define the standard deviation/error, denoted as SE(@), as the square root of the
variance.

3.1.4 Example: Gaussian Estimators

As an example, we return to the Gaussian example of sub-section 3.1.2, in which we have a iid
dataset from a Gaussian pdf, yielding the estimator:

i = 1Za; (101)

Var(f1) = Var(% Za:z) (102)
_ [; (ix—E fjx»] (103)

1 . 7 0—2 7
=3 ZVar(:Ui) =3 (104)

This has the the desirable property that as the sample size increases, the variance decreases, meaning
that our estimator approaches the correct value of the model that drives the data.

3.1.5 Bias and Variance Trade-off

The concepts of bias and variance for point estimators is one of a few key concepts to understand in
machine learning, due to its simple but significant contributions to the behaviour of a ML algorithm
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during training. Bias measures teh expected deviation from the true value of the function or
parameter. Variance provides a measure of the deviation from the expected estimator value, when
repeating the experiment with a number of iid datasets.

As such, we are often faced with the choice of selecting an estimator with more bias or more variance.
How do we navigate this decision? The question can be found in a mathematical certainty, imposed
by considering the mean squared error of the estimates:

MSE = E [(é - 0)2} (105)
—E [é"’ — 200 + 92} (106)
= E[6?] — 2E[A)6 + 6° (107)
= Var(0) + E[0] — 2E[d)0 + 0° (108)
— Var() + bias(6)2. (109)

The MSE we see here measures the difference between the estimator and the true value of the
parameter . What it shows is that a desirable estimator must balance the bias and variance
contributions. This is known as the bias-variance trade-off problem, in which the capacity of a
ML model should scale with the complexity of the data. If the capacity exceeds the complexity
you will be susceptible to a highly variance estimator. In contrast, a ML model that has a small
capacity relative to the complexity of the data, will have insufficient degrees of freedom to express
data behaviour, which means the estimator will be biased. This is demonstrated by Figure 1.

A

Underfitting zone Overfitting zone

Generalization

- €1Tor Variance
- -
| o
- i .—, -*® o o -AL’
Optimal Capacity

capacity

Figure 1: Bias-variance trade off problem, in which the x-axis shows the capacity of the ML model
(e.g. size of a neural network).
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3.2 Maximum Likelihood Method: Learning point estimator functions

We have implicitely defined a process of constructing point estimator functions, via the process
of proposing a function, and then test said function for desirable properties such as bias/variance.
This process however is cumbersome, and so we in principle want to define a process of deriving
functions that are good estimators for a family of different models.

The most common strategy is the mazimum likelihood method (MLM). Consider a dataset D =
{a:(i) € R"},, drawn from a distribution pgata(x). This true distribution is unknown, and so must
be learned. Therefore, we consider a parametric family of probability functions pyoqel(x; @), over
the same space as @, conditioned on some parameters 6. The goal is therefore to configure (learn)
the parameters @ such that we the difference between prodel and pgata is zero. This can be achieved
by the maximum likelihood estimator:

= argénax Pmodel(D; 0) (110)

= | | (). g 111
arg max Pmodel(XY7;0).
ge i d 1( ) ( )

This form of the MLM is problematic for machine learning learning, due to the fact that a computer
must represent a real value with a finite bit representation. Specifically, a computer has limited
resources to represent a float-point value. As such, the product of many potentially small or large
probabilities would result in numerical underflow/overflow. To prevent this, it is convenient to
utilise the log-likelihood:

O, = arg;nax Z log (pmodel(w(i); 0)) . (112)

Since the argument maximum operation (argmax) does not change when rescalling the function,
we can divide by the log likelihood by the number of data points m in the dataset, which expresses
the log-likelihood as a

1 & ; :
Oy, = arg;nax - zl: log (pmodel(:c( ); 9)) = arg;nax Ex~pya. l0g (pmodel(:z:( ); 0)) . (113)

3.3 Conditional Log-Likelihood and Mean Squared Error

The maximum likelihood estimator can also be defined for conditional probability distributions,
P(y|x,0). This is key, since it is primarily the problem set of supervised learning algorithms. In
this instance, {£® },,, represents all inputs, and {y?},, are the data labels/targets, such that the
MLM is defined as:

Onr = arg max P({y {2z }m), (114)

which for iid samples can be decomposed into:

Oy = arggnax Zlog (P(y(i)|m(i))) (115)

1
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3.4 Kullback-Leibler <+ Maximum Likelihood Method

Maximum likelihood methods are a powerful technique for estimating a probability density function
from examples alone (a dataset). It is however not always obvious as to why the product of
probabilities, when maximised for the model parameters, over the examples drawn from pgaia (),
forces the model probability (pmodel(x|€@)) to be the same. One way to interpret this method is
to consider the MLM as minimising the dissimilarity between the empirical distribution formed by
the dataset (Pgata(®)) and the model? as measured by the KL-div:

DKL(Pdata‘ |Pm0del) = ECENP [hl(Pdata) - ln(Pmodel)] . (116)

Naturally, the parameters of the ML model 8 are optimised by minimising the above dissimilarity
measure:

6 = arg min / Paata() 108(Paata (@) dz — / Paata() 108(Proder(2]6) ) da (117)

=0as no 6

= argemin — /pdata(x) log(pmode1 (x|0))dz (118)

Pdata ()=, 327" 8(z—4)

=argmin — / [; Z 6(z — ﬂfi)] log(pmodel (z]0))dx (119)

6
i — 25 log(podalal6) (120)
=argmin — — mode
a go m & Og\Pmodel \ T
= arg;nin E.~p1og(Pmodel (2]0)). (121)

What this results demonstrates, is that by minimising the KL-div, or dissimilarity, the negative
log-likelihood is maximised between the model and empirical distribution defined by the data. This
is essentially a density matching problem, and intuitively means that the MLM is just a process of
minimising a distance measure (see Section 2.12).
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Figure 2: The figure on the left is an illustration of point estimates of a density function pgata(z),
that forms an empirical distribution. The right figure is the continuous distribution, produced by
a ML model (ppodel()).
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