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What is Machine Learning?

2018: $432,000 painting sold at
Christie’s using a GAN
method via Obvious
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What is Machine Learning?

2023: Tricking the world is not hard with
such technology!

G{{alill'etlian
2018: $432,000 painting sold at T e e e -
Christie’s using a GAN I thought T was immune to being fooled
method via Obvious online. Then I saw the popeina coat
- - Joel Golby
//
//
/ = 4
/ "c“é_“ m;‘ E"‘[%ml ﬁ] Eb [&T G aﬂ@l‘bﬂﬂ An encounter with an Al-generated image of his holiness has
// changed me: Inow have sympathy for credulous baby boomers
/
» e [0« B, Loy 4-2l501)

Portrait of Edmond de Belamy

2022: Colarado state fair winner using
DALL - E2.

Sparks the question of morality in
the age of Al realism

. L ;
B 'l thought wearing a really big coat and looking like a Metal Gear Solid 2 boss battle might have
been part of his ongoing cool guy shtick. Lord, forgive me.' Photograph: Reddit
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What is Machine Learning?

Artificial Artificial Intelligence:
Intelligence Engineering behind intelligent machines
and programs

Machine
Learning

Machine Learning:
Ability to learn without being explicitly
programmed

Deep Deep Learning:
Learning Learning based on deep neural networks

DESY | Machine Learning Intro.
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What is Machine Learning? iving computers the ability to learn

without explicitly programming them’
- Arthur Samuel, 1959
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What is Machine Learning?

Paper: link

‘A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with

experience E.” - Mitchell 1997

[Mitchell 1997]: ISBN 0070428077
DESY | Machine Learning Intro.


https://ieeexplore.ieee.org/abstract/document/5389202

What is Machine Learning?

‘A computer program is said to learn from experience E with respect Paper: link
to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with
experience E.” - Mitchell 1997
* Experience (E): The stimulus that drives learning, is the set of examples X A ¢ Y
x, or a dataset D of many examples x = {z}x: 2 Py s % Py
e o o )
Supervised: The dataset examples have an associated label or target y = {y}~ ... ®
° o0 )
°
a O °
® ° °
° 0 ®
e e o °
* 0
>
X

[Mitchell 1997]: ISBN 0070428077
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What is Machine Learning?

‘A computer program is said to learn from experience E with respect Paper: link
to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with
experience E.” - Mitchell 1997
* Experience (E): The stimulus that drives learning, is the set of examples X A *°.
x, or a dataset D of many examples x = {z}x: 2 ° s e ®
) °
Supervised: The dataset examples have an associated label or target y = {y}~ e °
® (I °
Unsupervised: The dataset examples have no labels or targets ® ® :
o0’ -
o0 o °
(
>
X
1

[Mitchell 1997]: ISBN 0070428077
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What is Machine Learning? e
- Arthur Samuel, 1959

Paper: link

‘A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its
, tmproves with

performance at tasks in T , as measured by P

experience E.” - Mitchell 1997

* Task (T): Given an example = € R"the model f should learn a prediction y X, A
= f(z). E.
= f(z). E.g. .: . e .
Classification: Assign the example to a category f:R*» — {1,..k} e R
L L]
Regression: Predict the value of a target f: R* —» R ™
¢ [ ]
]
X

[Mitchell 1997]: ISBN 0070428077
DESY | Machine Learning Intro.


https://ieeexplore.ieee.org/abstract/document/5389202

What is Machine Learning?

* ‘A computer program is said to learn from experience E with respect Paper: link
to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with
experience E.” - Mitchell 1997

LN ]
x4 *
2 L
L] ] L e
® ® L
(1)
o °
] e @ ®
L ]
® [ ] L]
® ] ®
* Performance (P): Evaluate the performance of the model f * . . :'
Measure Theory: Generalisation of geometric distances for a measureable ol
space (§2,F), such that for a measure M : F — [0, +00] Xy
A
<
=
=
2
Z
)
X1

[Mitchell 1997]: ISBN 0070428077
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Basic Terminology - Day-to-day

* Datasets: The data from which the algorithm will need
to learn from:

D={{z, s} €ER*x R"}x B

® @
X A o
2 [
o [ ] [ [ ]
® ® [
(T )
®
® e @ @
L
[ ] [ ] L ]
® ® [ ]
I ) ®
o0 o °
® 0
-
X
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Basic Terminology - Day-to-day

* Datasets: The data from which the algorithm will need
to learn from:

D={{m, y; ER* X R"}n

X L

* Features: Each dimension of the example z, or input v ? o o % °

. . . ® ® ® L ]
space R¥, which represents some feature such as pixel ~— R’ L .
color, particle energy, etc...: e e o’
'. H o’
z € R* HE o’
e @
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Basic Terminology - Day-to-day

* Datasets: The data from which the algorithm will need
to learn from:

D={{m, y; ER* X R"}n

A
X

* Features: Each dimension of the example x, or input ’ *. o

space R, which represents some feature such as pixel .

color, particle energy, etc...: '. y

]
r € RY

* Algorithms: The process in which the model f defined x':

by a parameter set ® is optimised according to some
objective function:

¢ = arg min [ f]
)

DESY | Machine Learning Intro.
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AI/ML Summer N

* The boom in ML/AI has been primarily FLOP/s/$ (FLOP/</S)
the reSult Of: 60 billion AMD Radeon RX 7900 XTX" :ﬂa:;';dumr

NVIDIA GeForce RTX 4090, W NVIDIA
50 billion

Datasets: The vast amount of data from
images curated by ImageNet to 7
Protein Data Bank (PDB)

. NVIDIA GeForce RTX 3090 Ti
20 billion x .
-NV\DIA Geforce GTX 1080 Ti

Processing Power: The computational power PPt A
of CPU/GPUs and now emerging accelerator $9O oo a2 oo owTsaog  pubardmene  gwonse
J 16, 2008 Nov 4, 2011 Jul 31, 2014 Apr 26, 2017 Jan 21, 2020 Oct 17, 2022
platforms such as TPUs etc... Rl e
» Play time-lapse Jun 16,2008 @ @ Nov3 2022

* At a secondary level it is also the result of:

Open-source Libraries: PyTorch (Meta),
Tensorflow + JAX (Google), etc... F (€2 P
High—Level Interpretable Languages: TensorFlow

Julia, Python, etc... PY TbR CH

DESY | Machine Learning Intro.


https://image-net.org/
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AI/ML Summer THE NOBEL PRZE

IN PHYSICS 2024

* Bio-molecular research:

AlphaFold1.0 — 3.0 has lead to substantial
advancements in predicting protein structures:

DREAMING UP PROTEINS

Researchers used deep neural networks to invent, or ‘hallucinate’, sequences of =
amino acids that could fold into proteins; in some cases they have synthesized John J Hopﬂeld Geoffrevy E. Hinton
these proteins to compare their actual structures with predictions. : s e

PaYBWIT SepIN ssuoesny||

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

ES

THE NOBEL PRIZE
IN CHEMISTRY 2024

‘Hallucinated’ Actual structure Superposition of

protein (software (experimentally hallucinated (blue) and
prediction) determined) actual (grey) structures
Images: Ref. 7
d =P
.| Template | £
search | = 4
s Confidence|
nputs I I ] o
et -0 T::pbi;e# m'éﬁff b part 0—' 100 Baker
J e § P
S ey ol 1 T e Y Y
ligands, — N e 4 |(3+24+3blocks) %\\)
covalent Single | 4

Recycling Diffusion iterations

Machine Learning Int
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High Energy Physics — ML Developments

— Checkout the HEP Machine Learning Living Review

u (mabs)
) ph(alp,0) b gu(e) EE
likelihood test

hy = hist(f,(d; -
foldi) ist(f (ds)) model statistic hypothesis

data (d ) neural network  binned summary stat. test

s wall

DESY |

Machine Learning Intro.
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High Energy Physics — ML Developments

— Checkout the HEP Machine Learning Living Review

oy s wall

u (mabs)
[ _‘ pu(elp.6) Lslq, ()
likelihood test
bup, i h; = hist d; }
{50, bup }i foldi) ist(f (d:) model statistic hypothesis
data (d;) neural network  binned summary stat. test

N it

/ \ Event | Spa-NET Efficiency 27 Efficiency
ar 1N7e N ‘ Q Niets Fraction | Event Top Quark | Event Top Quark

SPANet Transformer - arXiv:2106.03898 || Fraction | Bven_Top Quark | Brent_Top Qua

=7 0.282 | 0.601 0.667 0.389 0.460

Transformer model using scaled dot-product equivariant =8 | 030 |os28 0613 | 0309 0384

Inclusive | 0.848 | 0.586 0.653 0.392 0.457

Ci lete Er ==6 0.074 | 0.803 0.837 0.593 0.643

outgomg particles propertles fOI' tOp—J et reconstructlon omplte et =7 0.105 | 0.667 0754 | 0.413  0.530

= ,‘/ =8 0.145 0.521 0.662 0.253 0.410

¢ \. \ "’ b b Inclusive | 0.325 | 0.633 0.732 0.456 0.552

1 1

2 g "
A
g M*@ql 999000 1 a H

q q Event SPA-NET Efficiency x* Efficiency
2 2 Niets Fraction | Event Higgs Top | Event Higgs Top
oMo po,m / 900000, 2 Q2 900000, [ Q2 All Events ==8 | 0.261 | 0370 0497 0.540 | 0.044 0.151 0.053
b b ==9 0.313 0.343 0.492 0.514 | 0.038 0.146 0.066
roton beams 2 2 =10 0.313 0.294 0.472 0.473 | 0.030 0.135 0.072
P Inclusive | 0.972 | 0.330 0.485 0.502 | 0.039 0.146 0.062
Complete Events ==8 0.042 0.532  0.657 0.663 | 0.016 0.151 0.063
==9 0.070 | 0.422 0.601 0.596 | 0.013 0.146 0.076
=10 0.115 | 0.306 0.545 0.523 | 0.008 0.134 0.080
Inclusive | 0.228 | 0.383 0.583 0.572 | 0.012 0.144 0.073

DESY |
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https://arxiv.org/pdf/2106.03898
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High Energy Physics — ML Developments

— Checkout the HEP Machine Learning Living Review

T s wall

Qu (mabs)
els i) {0
. likelihood test
b, bu i d; h; = hist(f.,(d; .
{0 bup, ! foldi) (fe(d) model statistic hypothesis
data (d;) neural network  binned summary stat. test
> T T T T T T T ™ @ ! 4 ! D e ba ! ! b
. . . . . $ 400F- ATLAS Internal ;\?:,.Hahi(uﬂ.\lz) E =1 ATLAS Internal B VH, H B a=0.52) 1
Typical signal classification in data 2 o Gopment Eima ™ g [ Foetn oo 1
T 350 02 leptons = ::::::LM) i 1= 1 lepton, 2 jets, B6-tag . i jets _
. . @ All SRs, BB Top(2L) E I.% 75 CeV < p¥ < 150 GeV -2DCW] 3
. 5 e liggs o = T 3
analyses, e.g. Higgs discovery: B 00 wegmaryhgpese  Tisow o e 3
o 250 . Wbt 3 T Muitijet L
2 - Zemt E . Weni -
Sensitivity Sensitivity Ratio Additional S 200 | E S i
Yearsofdata withoutmachine withmachine of P  data 2 V77 E B e s 3
Analysis  collection leamning leamning values required 150 22 Uncertainty —; - o 3
CMS?  2011-2012 2.20, 270, 4.0 51% 100) ] |:>
H—yy p=0.014 p= 0.0035 50
ATLAS*  2011-2012 2.50, 340, 18 85%
H—ttt™ P = 0.0062 P=0.00034 >
-—
ATLAS®®  2011-2012 1.90, 250, 4.7 73% ij 20, 3
VH — bb P = 0.029 P = 0.0062 s ] & 12 UMM I LR AL I L I R |
@ 4 - -
ATLAS*L  2015-2016 2.80, 300, 1.9 15% S + E F ] . IR
VH — bb P = 0.0026 P=0.00135 ] = 09 T T T T PO T T
' ]
CMstoe 2011-2012 1.40, 210, 4.5 125% ol o -1 08 -06-04-02 0 02 04 06 08 1
VH — bb P = 0.081 P=0.018 L

e
5080100 126" 146 60 180 500 BDT, output
Source: A. Radovic et al., Nature 560(2018) no. 7716,41 m,, [GeV]

Machine Learning Int
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High Energy Physics — ML Developments

— Checkout the HEP Machine Learning Living Review

Qu(mabs)
pu(al1,0) b>lqu(2)
{50, bup, Y fo(di) hi = hist(f.(d:)) likelihood test :
z model statistic hypothesis
data (d;) neural network  binned summary stat. test
Background Estimation by e ornsmoonenrenpime ]
3 . g C ExpExp RBF .
smoothing data-driven @ 2000 o
backgrounds using gaussian 1500 —
o AVAVAVAVE I
processes for H—yy ) S =
- ——<— A ]
Source: CDS-2791079 500 — 3
o .
E 0?1'5
HH oﬂ'g‘E . N o g
ae 3 N -
© 7&]13% 20 a0 40 50 60 70
M,, [GeV]
DESY | Machine Learning Intro.
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https://cds.cern.ch/record/2791079

High Energy Physics — ML Developments ’

— Checkout the HEP Machine Learning Living Review

T Lo wall

Gu (Zobs)
Sl A e bl
{ , [,’ bup, }z f (dl) hi = hlSt(fg(dm)) likelihood test -
z model statistic hypothesis
data (d;) neural network binned summary stat. test

/ = 8F ‘ . ]
- ATLAS internal E
. . . . - _ -1 .
New likelihood inferencing 7E Vs-13Tev. 140t
1 . 8- —— Obs. 4¢ Unbinned NSBI Analysis
paradlgm' 5 ===x= Obs. 4£ Histogram-Based Analysis
5 ——' Exp.4¢Unbinned NSBI Analysis

H—>ZZ Off—SheH analySiS USIHg - Exp. 4¢ Histogram-Based Analysis

unbinned likelihood ratios from

neural networks

gy g<2 .-.

Source: ATL-COM-PHYS-2024-24

Hof-shell

DESY |

Machine Learning In
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Machine Learning versus Algorithm Development

TRADITIONAL ALGORITHM'

MACHINE LEARNING
IS LIKE FARMING

DESY | Machine Learning Intro.
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Learning Law

* Four key parts to the ‘Machine Learning’ process:

a N

Dataset:
Supervised:
D={{m, u} € R"x R"}x
Unsupervised:

D={{a}ER" ]y

\

>

DESY | Machine Learning Intro.
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Learning Law

* Four key parts to the ‘Machine Learning’ process:

Model f:
E.g. Neural network with
/ \ parameters ¢
Dataset:
Supervised:
D={{m, u} € R"x R"}x
Unsupervised:
D={{n}E R}

\

)
< 4 o ©
2 L] ()
.. LI ; AN
' : @©—0O*
L] a .
. L) . : :
° E :
® ® . v
o . ° v
° . )
e e o ° :
e e @)
o

......

>

DESY |
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Learning Law !

* Four key parts to the ‘Machine Learning’ process:

Model f: / \
\ E.g. Neural network with

4 Dataset: parameters & Loss/Cost Function
Supervised: L (f: :L’) .
D={{m,y} ER x RV }x |~ > Function for calculating
Un;upervised- agreement between prediction
_ , X of model and implicit
\\ D={1n}ERh / data distribution

- J

(}7/ /_\A
X, A o u =3
e ettt i) o Vo Z%GKPHQ>==/////R7Q
® gj%’\ -
s By (0 (P(2) — In (Q(2))]
: : * ° :. . ‘3:/\ >

>

DESY |
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Learning Law - Recipe

* Four key parts to the ‘Machine Learning’ process:

-

Dataset:

Supervised:

Unsupervised:

D={{n}€R" }x

.

D = { {xi, yl}E RXX RY}N

~

Model f.
E.g. Neural network with

parameters ¢

4 N

Loss/Cost Function

L(f,x):

> Function for calculating

agreement between prediction

- J

of model and implicit
data distribution

28

Optimise
parameters P:

Optimisation algorithm

(= /_\A
g
< 4 e, @ /V =3 e
® S x
AT P Daple) = T
. . -
I s’ Eyp [In(P(z)) —In(Q(x))]
° .., .
oo e e . >
XJ.
DESY | Machine Learning Intro.
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Frequentist Statistics

* Probability is attributed only to the data x, meaning

probability of outcomes is obtained by repeatable .
experiments: Likelihood: p(X|9)

P(x=x)= lim Do A

n—oco N B

* Conditional probability, the probability of an outcome
(x=z) conditioned on the occurance of another random

process (y=y):
P(X =T,y = y)
Px=1x)

Px=zly=y) =

* Important to note that frequentist statistics assumes that
the data is drawn from p(x=x | 8), with a set of parameters
that characterise the underlying true distribution 6.

DESY | Machine Learning Intro.
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Frequentist Statistics

* Probability is attributed only to the data x, meaning
probability of outcomes is obtained by repeatable

experiments: Likelihood: p(x10)
Px=z)= lim —
( ) n—oco N 92

* Conditional probability, the probability of an outcome

(x=z) conditioned on the occurance of another random

process (y=y):

Px=uzy=y)
P X = = — ’
( y =) Pix=1)
.

* Important to note that frequentist statistics assumes that 91

the data is drawn from p(x=x | 8), with a set of parameters Mev is only one true value

that characterise the underlying true distribution 6. of Birue. The goal is to

estimate it ~ Q.

DESY |

Machine Learning Intro.




Likelihood: p(x10)
Bayesian Statistics A

* Probability is a degree of belief meaning that the
observed data x, is not necessarily defined by repeatability:

>

P(H|X:£Ij): P(X:$|H)P(H) 91
f P(X B x|H)P(H)dH Posterior: p(0Ix)
~ A '
Normalise over all pqssible e
hypotheses ~ marglnal 2 5
probability o true
_ P(x=x|H)P(H)
P(x =)
>
0

1

DESY | Machine Learning Intro.
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Estimators

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0 = g{z}m)

DESY | Machine Learning Intro.
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Estimators

Recall on slide 14 of this lecture that
from a mathematical perspective a ML
model is the set of optimal parameter

that match data and predictions/

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0= g{z}m)

14

Basic Terminology - Day-to-day

* Datasets: The data from which the algorithm will need
to learn from:

D= {{z, 4y} ER" x R"}x

* Features: Each dimension of the example z, or input .
space RY, which represents some feature such as pixel
color, particle energy, etc...:

€ R*
* Algorithms: The process in which the model fdeﬁn’e_d/ X

by a parameter set ¢ is optimised according to some
objective function: |

¥ =
¢ = arg min
P

DESY | Machine Learning Intro.

DESY |

Machine Learning Intro.
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Estimators

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0= g{z}m)

* Is there a recipe for extracting from the
data the optimal parameters or best
estimator?

DESY | Machine Learning Intro.
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Estimators

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0= g{z}m)

* Is there a recipe for extracting from the
data the optimal parameters or best
estimator?

— Maximum Likelihood Method:

General approach to estimating the point estimator

0 = arg max p ({Sﬂ}m|9) Log-likelihood is preferred
0 m for numerical stability: m
= arg max pl x |0) —In(L(O{z}m)) = — Z In p(;|0)
0 - 7

(2

DESY | Machine Learning Intro.



Guassian Estimator Example

Maximum Likelihood Method:

In a counting experiment, model data as Gaussian
distributed:

1(z; — p)°

1
p(xilp, o) = WGX}D[ SR

A
p(z | p o)

Model

DESY |

37

Machine Learning Intro.



Guassian Estimator Example

Maximum Likelihood Method:

In a counting experiment, model data as Gaussian
distributed:

1(z; — p)°

1
exp | ——
Voro? P [ 2 a?

p(a’;l|ua U) -

Fill in the maximum likelihood formula:

Y
Z ln ( 202/0

In(L(0|{z}m)) = Zlnme

p(z | p o)

Model

DESY |

38
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Guassian Estimator Example

Maximum Likelihood Method: Model

In a counting experiment, model data as Gaussian A
distributed: p(z | p o)

1 1(2; — p)°
plaglp, o) = \/ﬁexp [§@T

Fill in the maximum likelihood formula: >

— )2 Dat
(L0 }m)) = Ejmp%w }:m 2—( ;O p(2) I -

We have some data {x}m which forms an

empirical distribution (more on this later),
lets maximise the likelihood: II IIHMI I I I
L >

0
%(—lnﬁ(ﬁ\{x}m — ——Z Ti— ) in—m,u =0 T
1

DESY |

Machine Learning Intro.




Guassian Estimator Example

Maximum Likelihood Method:

In a counting experiment, model data as Gaussian
distributed:

1 1(z; — p)?
plalp, o) = Woromaty lng

Fill in the maximum likelihood formula:

m

() =~ S () = — Yy T

; 2ro?

We have some data {x}w which forms an
empirical distribution (more on this later),

lets maximise the likelihood:

9,
%(—lnﬁ(éﬂ{x}m |—>——E Ti—[t) g z;—mp =0
1

A Data

40

I
N
_ 1 S

’ With a bit of algebra we have

derived the sample mean

DESY |

Machine Learning Intro.
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Information Theory

* Self-Information:

I(gg) - — ln(P(x)) Key Points:
I) Data with low probability has high

information content

~

* Uncertainty in an entire distribution P(x) —
Shannon Entropy: IT) Independent data samples are

additive: I(z;e x2) = I(x; I(z»
H(z)=E,.p[(2)] = —E,p [In(P(z))] ¢ (w10 @) = 1(z) + 1(z)

J
* Relative Entropy between two distributions P(x)

and Q2) | D | Modd
p(z) a(z | 6)
DkL(P||Q) = Eup {111 (%)] N
=E;vp[In(P(z)) —In(Qz))] Hmﬁ I I I > >
S A p—




Information Theory

42

* Self-Information:

\‘\;DKL y
I{z) = —In(P(z))
* Uncertainty in an entire distribution P(x) — \*\ : //
Shannon Entropy: N /,//
H(z) =Ezp [I(2)] = —Epop [In(P(2)) N, f
* Relative Entropy between two distributions P(x) ,
Q(x) Y P(x) o
and Q(x): /,____1\>< 7
D (P| |Q) E |:1 (P(LL‘)) ] —F . : 5 T S \:\—\'\““3
KL - ~P [ =
) Q(z)
= Epp [In(P(z)) — In(Q(x))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P() i /
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)

Q(x) PN P(x)
and Q(x): o L 7
P(x) e Nt e
Dk1,(P||Q) =E,.p |In o)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \Dy, ;
I(z) = —In(P(x))
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: \\\ //

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)

and Q(z): Q(x) ;\“?ém
P(x) o e et T L
DKL(PHQ) :Easz In M

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)

u P(x)
e Wb
P(z) ] e e
DKL(PHQ) =E;wp |In M

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(z)
and Q(x): (%SQ/ \ Sl
Dk (P||Q) = E {1 (P (@)] —T | | e

KL = ~p |In | ——=

’ Q)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)

and Q(x): P(x)  Q( X)/,,/

(PllQ) =E 1 Plz) e e e T e
’ Qx)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.



48

Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(z)
P(x)  Qx)§

and Q(x): S e

DPIQ) = Eor |1 (55 )] b e e
L — ~P || =

) ’ Q)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : -+
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)

‘ P(x) o Q(x)
and Q(z): S T e T T
P(z) e e e
Dk1,(P||Q) =E,.p |In o)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Information Theory

* Self-Information: \‘\DKL 7
I() = ~n(P()
* Uncertainty in an entire distribution P(x) — } : 3
Shannon Entropy: N A

H(x) = Epop [I(2)] = =Epp (P (2))

* Relative Entropy between two distributions P(x)
o P(x) L Qx)
and Q(z): s i s
D (P| |Q) E |:1 (P(;{;)) ] —-————// RN /;f’><\\_
KL =Epop [N | —— — T AN 25 |
' Q)

B, p [n(P(z) - In (Q(2))

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum
likelihood comes from the idea of distance
between two distribution

A~

0 = arg ;TlaX Ex~piata log(Pmodel (16))]

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model

likelihood comes from the idea of distance
between two distribution

A~

0 = arg ;n 2 B, [108(Prmoder (216)) Hﬂm I I I > \’

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

DESY |

Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model

likelihood comes from the idea of distance
between two distribution

0= arg max B ~paara 108(Pmodel ((0))] mmm I I » / \\.

T T

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

o 0= argmin | [ pla)logtp(o)de — [ o) lonla(el0)ds |

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model
likelihood comes from the idea of distance p(2) o(z | 0)
between two distribution

0= arg max B ~paara 108(Pmodel ((0))] mmm I I » / \\>

T T

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

o 0= agmin | [ plo)logtoiods — [ pla)lon(a(el)ds |

arg min —/ p(x)log(q(x|0)) dx]

2 0

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model
likelihood comes from the idea of distance (@) o(z | 0)
between two distribution

0= g masc Bupy, (08P (216)) HNHIT,//\\“\,

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this _
works: T

DgL(PIQ) = Epp In (P(z)) — In (Q(x))] <

| 1
o 0= argmin | [ po)loatplede — [ ) ontatalods|  pla) = 300~

arg min —/ p(x)log(q(x|0)) d$]<

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model
likelihood comes from the idea of distance (@) o(z | 0)
between two distribution

b= g max oy, [08(poca@lf)] ML, / \\.

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this _
works: T

DiL(Pl|Q) = Epwp [In (P(x)) — In(Q(z) e

1§ = arg min / () log(p /p ) log( (x|9))dx] p(x)%zd(w—x@)

5§ = arg min —/ Zéx—xz log(q(x|6))dx |«

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model

likelihood comes from the idea of distance
between two distribution

0= arg max B ~paara 108(Pmodel ((0))] mmm I I » / \\.

T T

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

. ' ] &
4+ 6= argmin - Zlog(q(xﬂﬁ))
A

DESY | Machine Learning Intro.
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Maximum Likelihood Estimator

* Intuitive understanding of the maximum Data Model
likelihood comes from the idea of distance n(2) o(z | 0)
between two distribution

0= arg max B ~paara 108(Pmodel ((0))] mmm I I » / \\>

* Kullback-Leibler Divergence is equivalent
to maximum likelihood — lets see how this
works:

DL(P||Q) = Eyp [In (P(z)) — In (Q(x))]

s

; R .
4+ f = arg min - Zlog(q(a}im)) 5 0 = arg min Egp [—log(g(x]0))]
A

DESY | Machine Learning Intro.
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Learning Law

* Four key parts to the ‘Machine Learning’ process:

Model f / \
/ \ E.g. Neural network with
parameters ¢

Dataset: Loss/Cost Function
Supervised: L (f: :I:) . Optimise
D={{o, y ER x R"}n |~ > Function for calculat%ng. parameters -
. agreement between prediction
Unsupervised: L Optimisation algorithm
D={{n)ER}\ of model and implicit

\\ / data distribution

- J

© _A
i g
< 4 LIC I @) /V =
=) dL(f,x)/dP®
o e x Dru(PlQ) - Bl I
° oo’ . F :
. . : i Ey~p [In (P(z)) — In(Q(2))]
° .., . :
MR | > @ >
X, o
DESY | Machine Learning Intro.




o o ataset: 6
Supervised vs Unsupervised |
D={{m, y} € R x R"}x
Unsupervised:

D={{n}ER}x

* Supervised learning:
Examples x = {z}. paired with targets y = {y}n
that instruct the algorithm on what to learn

p(y|z)

* Unsupervised learning:

Examples x = {z}, with no targets

p(z)

DESY | Machine Learning Intro.



o o ataset: 62
Supervised vs Unsupervised e
D={{m, y} € R x R"}x
S

] . .‘.
* Supervised learning: X, . .
Examples x = {z}. paired with targets y = {y}n u: ¢
that instruct the algorithm on what to learn '. e ¢
o o
o
Conditional Density .
€T .
p(y| ) Estimation >
Xl
‘ L I °
* Unsupervised learning: %, . ¢ o
@ L ®
Examples x = {z}, with no targets oo .
] e @ . ]
p(:U ) Density Estimation ° H o’
[ B ] [ ]
L ] L " :

>
X
1
DESY | Machine Learning Intro.



Supervised vs Unsupervised a8
={{z,y} ER" x R}y
Unsupervised:

={{z}ER }

* Supervised learning:
Examples x = {z}. paired with targets y = {y}n
that instruct the algorlthm on what to learn Decomposing the problem into m-1 conditional density
estimation problems ~ supervised learning problems

» (y | .’L') Conditional Density <

Estimation ‘

m
* Unsupervised learning: p({l‘}m) - Hp($2|{x}’m—%)
0

Examples x = {z}, with no targets

yo, (:U ) Density Estimation T

DESY | Machine Learning Intro.



o o ataset: 6
Supervised vs Unsupervised |
={{n, p} ER' X R}
Unsupervised:

={{z}ER

* Supervised learning:
Examples x = {z}. paired with targets y = {y}n
that instruct the algorithm on what to learn

p(y |[L‘) Conditional Density

Estimation

* Unsupervised learning: pHytml{ztm) = pzim, {y}fn)
Examples x = {z}n with no targets Z@ p({.’E}m, {y}m)

yo, (:U ) Density Estimation <

Learning the joint distribution p(x,y) via unsupervised

learning techniques, then infer.

DESY | Machine Learning Intro.



o o ataset: 6
Supervised vs Unsupervised |
D={{m, y} € R x R"}x
Unsupervised:

D={{n}ER}x

R

* Supervised learning: L e
Examples x = {z}. paired with targets y = {y}n

that instruct the algorithm on what to learn

p(y|z) RS

1

* Unsupervised learning: EEEN | y=ax e

Examples x = {z}. with no targets

[

p (ﬂ?) Linear Regression Example

DESY | Machine Learning Intro.



Model f

66
MO d e]_ E.g. Neural network with

parameters ®

* Parametric linear model:

Y= w!x 2 |
* Configurable parameters of model ® = w o o |
x
y:@ .1? _ | _ _0_ '_ ;, -
In o ]
. | ! e

Linear Regression Example

DESY | Machine Learning Intro.



Loss/Cost Function | 87
L(f,z):

Function for calculating

Performance Measure: Loss Function

agreement between prediction
of model and implicit
data distribution

* Parametric linear model:

j=w'x : |
* Configurable parameters of model ¢ = w :
—_— €1, Ll L | ||
L
y = Wiy ., Un ' £} 0 v :'
% | | | s i
* Loss: Mean squared error | : y = laz +| e
1 R 9 2
L=—> (G-
m i Linear Regression Example

DESY | Machine Learning Intro.



Loss/Cost Function | ©8
L(f,x):

Function for calculating

Performance Measure: Loss Function

agreement between prediction
of model and implicit
data distribution

* Parametric linear model:

j=w'x : |
* Configurable parameters of model ® = w :
—_— €1, Ll I . | ||
L
y = Wiy ., Un ' £} 0 v :'
% | | | ) |
* Loss: Mean squared error | : y = laz +| e
1 2 | Why th ’
N y the mean
L==) (1-y) A
m i squared error: Linear Regression Example

DESY | Machine Learning Intro.
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parameters ®:

Optimisation algorithm

Maximum Likelihood Approach Optimise

* I said there was a general likelihood approach to

estimating/learning parameters:

~

m
§ = arg max Zlnp(mi\ﬁ)
0

i

* General MLE estimate also applies to 1 o T 1
conditional probability: EEEE i

m
0 =arg max 3 In (p(y;le;, 6) RESURK
)

Linear Regression Example

DESY | Machine Learning Intro.
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Optimise

Maximum Likelihood Approach

parameters ®:

Optimisation algorithm

Linear Regression Example

* Probabilistic view of regression:

Data generated with an error term that is gaussian

distributed, meaning repeated experiments have some T

noise:

Y = o+ e; yi ~ N(az;, o) EN NN ENEENES

€; NN(O,O‘)

DESY | Machine Learning Intro.
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Maximum Likelihood Approach Optimise

parameters ®:

Optimisation algorithm

Linear Regression Example

* Probabilistic view of regression:

Data generated with an error term that is gaussian | | .
distributed, meaning repeated experiments have some | | EAEL
noise: |
Yi = QT + € y; ~ Nlazg, o) ——a—
€; ~~ N(O, O') . «
2.0 A 2.0 A
y y
2.0 ] —2.():

DESY | Machine Learning Intro.
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Optimise

Maximum Likelihood Approach

parameters ®:

Optimisation algorithm

Linear Regression Example

Probabilistic view of regression:

Data generated with an error term that is gaussian | EEEE
distributed, meaning repeated experiments have some | | EAEL
noise: | | |
y; = ax; + €; yi ~ N(az;, o) e R REE A aa e
€; ~ N(O, O') . «
p(y’t|x2a Oé) = N(yz Yis O-) = N(UA(MC?A O-) 20 A 20 A

<~

I Y ) O I B
<
s

Y I O Y I

2.0 -2.0

DESY | Machine Learning Intro.
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parameters ®:

Optimisation algorithm

Maximum Likelihood Approach Optimise

* Generalise MLE estimate the conditional

Linear Regression Example

probability:
- maxzm nlsit) '
plyilzi, o) | EEEERA

* Probabilistic view of regression: - = Nlyilaz;,0) — » ST
(azi—p?\ o
= arg max Zln e 20 Ja :

27r0 .« 4
20 A 2.0 A
-2.0 ] —2.():

DESY | Machine Learning Intro.
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Maximum Likelihood Approach Optimise
parameters ®:
* Generalise MLE estimate the conditional Linear Regression Example
probability:
6 = arg malen (ilzi, )) |
plyilzi; o) | |
* Probabilistic view of regression: - = Nlyilaz;,0) — , .
(Omr:u)Q o
= arg max Zln A ;
27r0
(i — p)”
- - )
= —mn(o) In 2m) Z 202 20 A 20 A
-2.0 ] —2.():

DESY | Machine Learning Intro.
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parameters ®:
Optimisation algorithm

Maximum Likelihood Approach Optimise

* Generalise MLE estimate the conditional Linear Regression Example

probability:
0= arg malen (yilzi,9))

* Probabilistic view of regression:  AREBEREREL

(Omr:u)Q o

Q= arg max Z In 202 .
27r0 y

m az; — p1)?
:—mln(a)—gln(?fr)—-z( d 2#)

* Maximising the log-likelihood is equivalent to

Mo
Q
b
. < (en)
\\\\\\\\\>
[\
>

Mean Squared Error minimisation 50 20

DESY | Machine Learning Intro.
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Gradient Descent Optimise

parameters ®:

Optimisation algorithm

* First Order Gradient Descent:

vw:MSEtra.in =10 /
| . *
= vwr;”y(tr&m) _ y(tra.m)H% -0 /

- lvw“X{lrain)w _ y(l.ra.in}”g -0 /
m 2 - 0 7
= Vi (X(Lrain)w o y(l.ra.in)) T (X(Lrain)w o y(l.ra.in)) =0 /

= Vi (wTX(lra.in}TX(Lrain)w o 2'wT X(l.ra.in}T y(lra.in) + y(l.rain}Ty(Lrain)) -0 /;
- QX(train)TX(tra.in)w _ QX(tra.in)T y(tra.in) -0 /.
— o — (X(Lrain)T X(Lrain))_1 X(Lram}Ty(Lrain)

Linear Regression Example

DESY |

Machine Learning Intro.




Capacity & Bias-Variance Trade-Off i

* Capacity of a model ~ the number of degrees
of freedom that can be tuned

1* Order Polynomial: ¢ = wx + b /
2 Order Polynomial: ¥ = W1 + ’LU2£C2 +0b . - | //\
~ fL‘ . 2 2 |
9 Order Polynomial: Y = Z wir +b
7

DESY | Machine Learning Intro.



Capacity & Bias-Variance Trade-Off N

* Capacity of a model ~ the number of degrees /
of freedom that can be tuned 2 g ’ /
1% Order Polynomial: Q = wx +b | L | | A | // /\
214 Order Polynomial: 4§ = W1Z + ’LUQZCQ +b ] \—/ 1. \

Underfitting zone Overfitting zone

9
9% Order Polynomial: Y= Z ’LUiiUZ +b
0

* Under/Over-fitting avoided by matching
capacity of model to complexity of the

Generalization

CITOr

problem N

-» -—
| o=
-_— s b .—, *® ® ® ®© =
Optimal Capacity
capacity

DESY | Machine Learning Intro.

Variance

-—

| o aSwe
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Estimators

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0= g{z}m)

* Bias of an estimator is given by:

Y

bias(0) = E(0) — 0

* Variance of an estimator:

~

Var(6)

DESY | Machine Learning Intro.
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Estimators

* Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0= g{z}m) High K

variance / Y\
* Bias of an estimator is given by: :L / /

bias(f) =E(#) — 0 d=T N

* Variance of an estimator: ] T

~

Var(6) ¥

DESY |

Machine Learning Intro.
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Capacity & Bias-Variance Trade-Off

AR AL

* Bias-Variance trade-off: . [ R \

MSE(),0) = E [ (4 — 9)2] . IEaREamr - |
~E _é2—250+92] A
= E é2:| — 2E [é] 9 _I_ 92 Underfitting zone Overfitting zone

— Var(0)+E [9] _— [9] 0+62
— Var(f) + bias()?

Generalization

erTor
-
. & e o o = ’
Optimal Capacity
capacity

DESY | Machine Learning Intro.

Variance

-—

-
-l geee| —
o o om— T -
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_//1 .,/:.. Learning Recipe

=

4




Recap

General recipe for most ML

algorithms or learning processes:

Loss/Cost
Function

Optimisation
Algorithm

DESY |

83

Machine Learning Intro.



Recap

General recipe for most ML

algorithms or learning processes:

Dataset

Model f

Loss/Cost

Function

Optimisation
Algorithm

Experience

84

* Supervised learning:
Examples x = {z}, paired with targets y = {y}.
that instruct the algorithm on what to learn

p(y II) Conditional Density

Estimation

* Unsupervised learning:
Examples x = {z}. With no targets

p(i{,) Density Estimation

-~

D={{m,y€ER" xR }x

o

~

Dataset:

Supervised:

Unsupervised:

D={{a}ERh

/

DESY |

Machine Learning Intro.




Recap

General recipe for most ML
algorithms or learning processes:

Dataset

Loss/Cost
Function

Optimisation
Algorithm

Task

85

* Parametric linear model:

Y w'x

* Configurable parameters of model ® = w

Linear Regression Example

DESY |

Machine Learning Intro.




Recap

General recipe for most ML

algorithms or learning processes:

Dataset

Model f

Loss/Cost

Function

Optimisation
Algorithm

Performance

86

* Generalise MLE estimate the conditional

probability:

sl

Linear Regression Example

0~ arg max Z In(ply]e;.0))
ks

b

* Probabilistic view of regression:

7 = arg max
o

’ 2
m [y — ;)=
e LI

1
Y
; e

m
milog(e) Y log(2m)

2a<

m

Z vy — ;:.)2
202

;

* Maximising the log-likelihood is equivalent to

DESY |

Machine Learning Intro.




Recap

General recipe for most ML

algorithms or learning processes:

Dataset

Loss/Cost
Function

Optimisation
Algorithm

87

* First Order Gradient Descent:

VaMSEeain = 0 56)
- vwi”gllram] ~ gl 2 (5.7)
m

:.-?,L,V,.,HX““‘“’w—y“"“"ll% =0 (58)
Lo, (X[,m.,,Jw B ,,,f‘""'"]) N ( xttrain) gy yitmin)) =0 (5.9)

-V, (w-rxummrrx[miu)m Qg X train) T y{‘ ain) 4 u“ m":_b‘tlml ') =0
(5.10)
g x(train) T ye(train) gxf“‘i"]-r-d"am} =10 (5.11)
w :(X[ua'mrr X mm})_l X (train) T (erain} (5.12)

o

b

Linear Regression Example

DESY |

Machine Learning Intro.




Recap

General recipe for most ML

algorithms or learning processes:

Loss/Cost
Function

Optimisation
Algorithm

Are we done?

DESY |

88

Machine Learning Intro.



Recap

General recipe for most ML

algorithms or learning processes:

Dataset

Model f

Loss/Cost

Function

Optimisation
Algorithm

Are we done?

89

* How do we change the family of functions

that a model learns? Scale capacity?

* Capacity of a model ~ the number of degrees

of freedom that can be tuned

1" Order Polynomial: 3 — wr + b

N a9
2% Order Polynomial: @ = w.r + wor™ | b

9
9" Order Polynomial: U - z “"rrT -
i

* Under/Over-fitting avoided by matching
capacity of model to complexity of the

problem

Optimal Capacity

capacity

DESY |

Machine Learning Intro.
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_//1 ./:. Neural Networks

=

4
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Neuron

* Building block of neural networks:

Bias (k_'_l (k)
3 % Z Wi

~

e
Activation
e Function
— »
Output
- b

Summing
Junction

k-1,

Activations: g

Synaptic
weights

Machine Learning Intro.

DESY |
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Neuron — Layer

* Building block of neural networks:

O

@ (k+1) _ (k)
N + b

o K Z i

s

Input Domain: X
A

Where, a¥); is the activation value, and the
d={w®; b®} are the configurable weights & biases

* Neural Network layer is the combination of

ol —— many neurons densely connected (mostly...):
unctior OU;PM a(()k:+1) w(o) w?(lo) a(gk) b(()k)
k+1 k k b g
alf ) é b B gl by

DESY | Machine Learning Intro.



Neural Network ”

* A total network is therefore:

Q all) — ¢ (W(O)X n 5(0))

Input Domain: X
A

,---:Osm alk) — ¢ (W(k—l)a(k—l) n ﬁ(k—l))

s(x) = WHa®) 4 b

* ¢is the activation function, which can take

irmEs many forms

* Optimisation is done via typically gradient
based descent algorithms

DESY | Machine Learning Intro.
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Stochastic Gradient Descent

* Stochastic Gradient Descent is an

adaptation of gradient descent: [ dL ]
70 1) Calculate gradients: a_ﬁ _ 90
. 7 | i
| Do, ]
2) Update the parameters in i

direction that minimises loss:
t+1) t)
ARRSY L e
JEB} 8¢3 J
* Batch based training with iterative updates

to the gradients based on an epoch ‘t’, but
the key goal is to learn:

OL; OL;

ap™ awlV

DESY | Machine Learning Intro.




Backwards Propagation — Optimisation Algorithm .

s(x) = Whlalk) 4 50

k* layer

DESY |

Machine Learning Intro.




Backwards Propagation — Optimisation Algorithm .

alt) — k1+5k1 s(x) — Wklah) | k)

B

k* layer

DESY |

Machine Learning Intro.




Backwards Propagation — Optimisation Algorithm &

al = ¢ (WODalt=D) 4 gD} s(x) = Wilalk) 4 509

Bias
b T
N\ H _— a
- 0\ Activat L .
/

k* layer

DESY |

Machine Learning Intro.




Backwards Propagation — Optimisation Algorithm .

al = ¢ (WODalt=D) 4 gD} s(x) = Wilalk) 4 509

o .
....... < agb g k ) J

k* layer

DESY |

Machine Learning Intro.




Backwards Propagation — Optimisation Algorithm .

a(l):¢(W(O)x+ﬁ(0)) ¢ ch Dalk=1) 4 glk=1) 1 = Wkak) 4 gk

8£] """
T < T e e e e e e <

k* layer

DESY |
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Backwards Propagation — Optimisation Algorithm  *

o)x+ﬁ(0 ¢ chl (k— 1+5k1 — wkah) 4 gk)

o

k* layer

DESY |

Machine Learning Intro.
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all) = ¢ (W(O)X + 5(0))
8[,
a¢1) A

* Chain rule used to decompose
the differential behaviour of the
loss L per-layer (intermediate)

variables in reverse order:

dy o212 9z %) Oy
oz 921 9z(2) §23)

k1+5k1

X

Wka®) 4 5k

DESY |

B
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Backwards Propagation — Optimisation Algorithm
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* Chain rule used to decompose
the differential behaviour of the
loss L per-layer (intermediate)

variables in reverse order:

dy o212 9z %) Oy

Oz 9z or(2) 5 (3)

alk) = ¢ (W(k—l)a(k—l) + 5(k—1)>

s(x) = Wk)a®) 1 (k)

....... Q— *)
0o

DESY |

Machine Learning Intro.
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* Chain rule used to decompose
the differential behaviour of the
loss L per-layer (intermediate)

variables in reverse order:

dy o212 9z %) Oy
Oz 9z or(2) 5 (3)

alk) = ¢ (W(k—l)a(k—l) + 5(k—1)>

s(x) = Wk)a®) 1 (k)

....... Q— *)
- 005

L

6£j B aagk) 863
96~ 50T 51

DESY |
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al) = ¢ (W(O)X + 5(0))
Ty < <
o)

* Chain rule used to decompose
the differential behaviour of the
loss L per-layer (intermediate)

variables in reverse order:

o212 9z %) Oy
0z 9(2) §2(3)

dy

Ozl

alk) = ¢ (W(k—l)a(k—l) + 5(k—1)>

oL,
3a§-k)
6£j N aagk) 863
96~ 50T 51
&Cj

Ty <
o

9 =1 - 8a§_k—1)

a¢) ((9a§k) ar,

(k) 5 (k)
J d¢ 8aj

)

s(x) = Wk)a®) 1 (k)

DESY |
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al) = ¢ (W(O)X + 5(0))
% oc,
Y] T )

* Chain rule used to decompose
the differential behaviour of the
loss L per-layer (intermediate)

variables in reverse order:

(3) oy
(2) 9(3)

022 oz
0zl oz

dy
ozl

alk) = ¢ (W(k—l)a(k—l) + g(k—1)>

s(x) = Wk)a®) 1 (k)

ool dall”

oL,

Uﬂ)aagk)

6£j N aaj 863

90l 301 551

8L‘,j B a@’b;k) aa_g'k) 8£3
8a(-k_1) B 8a(-k_1) 8¢UE) 8&5@

8ﬁj gk b 8¢ ) 8a(k) 8£3
8¢§k—1) ngk 1) 9 Jgk 1)8¢k agk)

DESY |
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Backwards Propagation — Optimisation Algorithm  **

al) = ¢ (W(O)X + 5(0))

s(x) = Wk)a®) 1 (k)

ooooooo

* Chain rule again used to decompose
the differential behaviour of the loss L
per-parameter (Izk):{W, B} o, 0 (bgk) (‘?a;-k) oc;
oL aa} oL 8a§k_1) N 8a§k_1) 8¢(k) 8a§k)
aw(k) GWUS) 3a(k
j

J

<]

DESY | Machine Learning Intro.
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Recap

General recipe for most ML

: : Are we done?
algorithms or learning processes:

* How do we change the family of functions

that a model learns? Scale capacity?
Dataset * What if we want to predict a discrete value and (@
\ not a continuous value (classification)?
Model f

ofoJofo

AN
z

Input Domain: X

Loss/Cost

Function

Optimisation
Algorithm

DESY |

Machine Learning Intro.
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Activation Functions

Choice of ¢ activation functions is pathological

Decisions based on an array of factors

The most common is the concept of vanishing

gradients:

oL : 8a(.k_2) (6¢§k1) aa(-k_l) (9(;55“ aa(-k) OL; )

J J J J
k—2)

awjﬁ’“‘z) - awg. 8a§k_2) dph—1) E)ag-k_l) 8¢(k)aa§k)

Q\/g' ;Y_/’
Sigmoid ReLU Sigmoid ReLU
=1/4 =1 =1/4 =1

DESY | Machine Learning Intro.
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Classification — Discrete Value Predictions

* Task: Classify using a dataset drawn from a joint distribution
p(z,y):
Features = € R»
Labels y € R
p(x[y)ply =1)
p(x

* Goal is to predict y given an instance of z: p(y = 1|x) =

DESY | Machine Learning Intro.



110

Classification — Discrete Value Predictions

* Task: Classify using a dataset drawn from a joint distribution
p(z,y):

Features = € R
Labels y € R

* Goal is to predict y given an instance of z: p(y = 1|x) =

DESY | Machine Learning Intro.
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Classification — Discrete Value Predictions

* Task: Classify using a dataset drawn from a joint distribution
p(z,y):

Features = € R
Labels y € R

* Goal is to predict y given an instance of z: p(y = 1|x) =

p(x)
B 1
-~ p(x|y=0)p(y=0)
NEEREE - pgpy=1 !
&)= 1= _ p(x[y)ply = 1)
i p(x|y =0)p(y =0) +p(x|y = )p(y = 1)
1
- p(x|y=0)p(y=0)
e : | L exp (log (p(xw:np(y:l)))

DESY | Machine Learning Intro.
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Classification — Discrete Value Predictions

* Task: Classify using a dataset drawn from a joint distribution Lf)g‘LikelihOOd Ratio

e Features z € R” ply = 1ix) =0 (log (itlz i (13)
Labels y € R ) log(ig z (1)3)) |

* Goal is to predict y given an instance of z:

—

—

T ==

|

Q 4

DESY | Machine Learning Intro.
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Classification — Discrete Value Predictions

* Task: Classify using a dataset drawn from a joint distribution Lf)g'LikelihOOd Ratio

) ply=1x) =0 (log (p(XIy = 1))

Features = € R» p(XIy = O)
Labels y € R —1
T log (p(’y )))
ply =0)

* Goal is to predict y given an instance of z:

|
o(#) = —— A
l+e The sigmoid converts the ¢ °
| 2 distance from a normal .: o
i regression problem to a o
probabilistic decision ¢
! boundary :

DESY | Machine Learning Intro.
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Recap

General recipe for most ML
: : Are we done?
algorithms or learning processes: ] ]
* How do we change the family of functions

that a model learns? Scale capacity?
Dataset * What if we want to predict a discrete value and

not a continuous value (classification)?

Model f /
At

i

Loss/Cost
Function

5%
e

e

Linear Regression Example

DESY |

Optimisation
Algorithm

Machine Learning Intro.
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Diversity of Neural Networks

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

* Ever growing number of fundamental building

. \
5 OSBIR SRS
blocks to neural based systems To oot ot ot
i Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
* No universally best block for all uses cases, e s G0 o o O
XD 0o :>_<:>O<l 0
the various building blocks have different X 00 AV
XD el :>_<:>Q/“ ol

[

strengths and weaknesses

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
A mostly complete chart of
) Input Cell
® e Neural Networks o
6 Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

é Noisy Input Cell Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

@ Hidden Cell - - -
. Probablistic Hidden Cell : o o

. Spiking Hidden Cell

o\

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o o o o o o

. Capsule Cell - - T
SREREA RERTAX REAAX JR———

. Match Input Output Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE) s . }(,, {A}"“}"
R SATATAS
QAW

. Recurrent Cell

. Memory Cell

. Gated Memory Cell

| ¥ ]

0 Kernel

O Convolution or Pool

Machine Learning Int

DESY |
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Convolutional Neural Network

* Extract relevant features from a high
dimensional input domain space given by the
pixel space of an image of height and width
H X W — z eRW

* Salient features ~ e.g. the lines of contrast
between the foreground and the background

Representation

DESY | Machine Learning Intro.
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Convolutional Neural Network

* Extract relevant features from a high
dimensional input domain space given by the
pixel space of an image of height and width
H X W — z eRW

* Salient features ~ e.g. the lines of contrast
between the foreground and the background

S'i A

Stin = willis + walls Representation
+ ws'ls +W41122

Image 2anan

Kernel ‘filter’ K

DESY |

Machine Learning Intro.
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Convolutional Neural Network

* Extract relevant features from a high
dimensional input domain space given by the
pixel space of an image of height and width
H X W — z eRW

* Salient features ~ e.g. the lines of contrast
between the foreground and the background

* The key building block is the kernel filter:

Stz

Representation

DESY | Machine Learning Intro.



121

Convolutional Neural Network

* Extract relevant features from a high
dimensional input domain space given by the
pixel space of an image of height and width
H X W — z eRW

* Salient features ~ e.g. the lines of contrast
between the foreground and the background

* The key building block is the kernel filter:

S'11 | Stz

St Representation

_____________
DESY | Machine Learning Intro.




Convolutional Neural Network

* Extract relevant features from a high
dimensional input domain space given by the
pixel space of an image of height and width
H X W — z eRW

* Salient features ~ e.g. the lines of contrast
between the foreground and the background

* The key building block is the kernel filter:

Stz

S'a2

DESY |

122

Representation

Machine Learning Intro.
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Convolutional Neural Network

* Formally the kernel convolution operation:

S(,5) = (I« K)(i,5) =YY I(m,n)K(i —m,j — n)

m mn

* Salient feature map ‘S’ is by default smaller:
S ER(H—KHP/S +1)x(W—K + 2P/S + 1)

* Compressing image size further to reduce input

dimension by max/average pooling

max pooling
20|30
112] 37
12/20|30| 0
8 (12|20 /
34(70| 37| 4 average pooling
112/100f 25| 12 13] 8
79120

DESY |
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Convolutional Neural Network

* Formally the kernel convolution operation:

S(t,7) = (I *K)(i,7) = ZZImn (t—m,7—mn)

* Salient feature map ‘S’ is by default smaller:

S e[REKHP/S +1)x(WK +2P/S + 1) . ‘- ‘

|
|
|
. . . . 4 | | ; - -
* Compressing image size further to reduce input | °® n 5 |

| |
dimension by max/average pooling | | //! | _ | |
max pooling } i // o v
| 4
2030 1
112] 37 )
12/20| 30| 0
8 12|20 /
34|70|37| 4 average pooling
112100{ 25 | 12 ols
79|20

DESY | Machine Learning Intro.
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* Formally the kernel convolution operation:

S(,5) = (I« K)(i,5) =YY I(m,n)K(i —m,j — n)

* Salient feature map ‘S’ is by default smaller:

S e[RHEK+2P/S +1)x(W—K + 2P/S + 1)

* Compressing image size further to reduce input

dimension by max/average pooling

max pooling

12

20

30

20 30
112 37

12

34

70

37

oV

112

100

25

ﬁrage pooling

13| 8
79|20

CNN Layer 1 CNN Layer 2

x6 Kernels x6 Kernels
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Convolutional Neural Network

* Formally the kernel convolution operation:

S(,5) = (I« K)(i,5) =YY I(m,n)K(i —m,j — n)

m mn

* The inverse transpose operation
* Salient feature map ‘S’ is by default smaller:

S e R(H—KHP/S +1)x(W—K + 2P/S + 1)

expands the image:

W,
* Compressing image size further to reduce input ’ o e T
dimension by max/average pooling o
max pooling — | It N LI
20|30 Convolution 2D-Layer > Convolutional 2D Transpose Y
112|37
12120 30| O
8 12[2] 0
34(70| 37| 4 average pooling
112100{ 25| 12 s
79|20

DESY |

Machine Learning Intro.
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Transformers

* Before Transformers: 4
'+ Recurrent Neural Networks: N GT)% e
ottt S, - o] ) [ -
Sequential models utilise recurrent connections, in which the T v T v T v | v
u u u u

output of the network is passed from time step t to t+1 via
NG a recurrent unit — great sequences J \\ @ @ @ @

‘s Convolution Neural Networks:

Model that utilises kernel filters to learn ‘salient’ features e
by convoluting nearby activity into increasingly abstract L output O O O O O O O 0009 O 869

features — great for local information extraction in

hidden layer 3 OOOOOOOOOOOOOOO

sequences fardaraa I \ ...............

hidden layer 2 OOOOOOOOOOO‘O O‘OO

/MXNN\lﬁ_.

hidden layer 1 O O O O OR®) O OOO

"""" VWWXXXW

N input N NN N N N N N N )

DESY | Machine Learning Intro.
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Before Transformers:
* Recurrent Neural Networks:
Sequential models utilise recurrent connections, in which the
output of the network is passed from time step t to t+1 via
a recurrent unit — great sequences
* Convolution Neural Networks:
Model that utilises kernel filters to learn ‘salient’ features
by convoluting nearby activity into increasingly abstract
features — great for local information extraction in

sequences

~

K Transformers:

* Introduced attention mechanisms
Provides information about all positions
simultaneously

Great for sequences, and geometrical data such as

/

images

Provided proper attribution is provided, Google hereby grants permission to N\ TTTIrrereeeeee
reproduce the tables and figures in this paper solely for use in journalistic or .
scholarly works. Chatpt

Frobabilities

Attention Is All You Need

Ashish Vaswani*
Google Brain
i com

Noam Shazeer* Niki Parmar® Jakob Uszkoreit*

Google Brain Google Research Google Research
Llion Jones* Aidan N. Gomez" ' ‘Lukasz Kaiser”
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs. toronto. edu lukaszkaiser@google.com
1llia Polosukhin® * * r

illia.polosukhin@gmail.com Bad & MNorm

Source: arXiv:1706.03762 / Add & Nom Tulti-Head

8 Faed Attention
Forwerd I 7 e
—
M Acdd & Morm
~+_Add & Mom || o

Multi-Head Multi-Head

Antention Attention

it it

N J )
Positiona 3 Praitional
Encocing <; : & Encoding
Input Output
Embedding Emibedding

I I

Inpais Cutputs
[shifted nght)

Figure 1: The Transformer - model architecture.

DESY |
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Context Matters — Global Attention

The distribution of pixel values
can be generated to reflect a
conditional probability:

p(z;|C = ’Small cute animal with wide eyes’)
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Context Matters — Global Attention

The distribution of pixel values
can be generated to reflect a
conditional probability:

p(z;|C = ’Small cute animal with wide eyes’)

But what we want is each pixel
to be dependent on the context
and the rest of the pixel values:

HxW

p(x;|C = 'Small cute..., Z ;)
JFi

DESY | Machine Learning Intro.
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Transformers — Scaled dot-product attention

* Advantages of Transformers (physics focus):
* Handle variable length data

Multi-Head Attention

* Capture long-range dependencies in data
* Permutation/order invariant Goncat

* Highliy parallelisable

MultiHead(Q, K, V) = Concat(head;, .., head;, )W
where head; = Attention(QWS2, KWF vIvY)

* Attention Mechanism:

* The success of transformers resides at

first order in the introduction

of the attention mechanism
e TR
* Understanding attention needs you to Mot Hiead K"
understand the idea of: S —— et oo R s
* vector embeddings Enndng C}g el S
* attention N ,, WIEETN
T i o K oV

Figure 1: The Transformer - model architecture.

DESY | Machine Learning Intro.



Transformers — Vector Embeddings

133

* Transformers act on vectors:
* Tokenisation+embedding turns each element of the

sequence into a vector that resides in a vector space:

Embedding

EzA
‘plays’
Es ®
_a dog
fetch’—®
——— >

L
. —
— -0
¥ =
Inpt
Embedding

Figure 1: The Transformer - model architecture.

DESY |

Machine Learning Intro.
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Transformers — Vector Embeddings

* Transformers act on vectors:
* Tokenisation+embedding turns each element of the

sequence into a vector that resides in a vector space:

B ==

| F + 3

|
Es & o
_— Emlﬂfd“ﬁhg I [ ]

- l [

//;/:///iiv
//é/////;//

Figure 1: The Transformer - model architecture.

Machine Learning Intro.
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Transformers — Attention
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* Attention = Dynamic flow of information

* Fach embedded token stores which token matters and by how

much 0.76

Xi =

||
Ti= B8 ||
| |

* Scaled-dot product attention is one type of attention that

achieves this goal:
QK"

R

Attention( (), K, V') = softmax( W
* Three key ingredients:

* Query (Q) : What am I looking for?

* Key (K) : What do I have to offer?

* Value (V) : What do I share if picked?

N Acic] & MO jee,
Maskad
Multi-Head
Attention
1 J
" —
Positional g™ ™~ Positions
)\ ) =
Encocng S\ T \J_‘C‘“:) Encoding
Input Cutput
Embedding Emibeddirg

Figure 1: The Transformer - model architecture.

DESY |
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Transformers — Visualising Attention

* Lets see how this works for a simple case:
:@ﬁ\
?

* 1) Define scaled-dot product attention weights for

optimisation: I

* Wgq: Matrix of weights for queries, shape = [n, €] ===

* Wk: Matrix of weights for keys, shape = [n, e .
- el -

* Wy : Matrix of weights for values, shape = [n, €] | |
] [ ]

Xy =

DESY |

Machine Learning Intro.
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Transformers — Visualising Attention

. . MultiHead{(), K, V) = Concat{head, ..., head; )W
* Lets see how this works for a simple case: where head, = Attention(QW2, KWX VWY)

Multi-Head Attention

?

Concat
p I
* 2) Compute the query, key and value triplet (Q,K,V) for *Scaled Dot-Product N
‘plays’ -1 | W ‘,
Qplays: Wq. T, = === ' = = [1,¢] Scaled Dot-Product Attention
s v Kk o | (e
° Kd(f): Wk . Td(f) . I [l,e] '
BN
[ |
* Vyp: Wy. Ty = HEEEEE - BN= [1,e]
A

DESY |
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Transformers — Visualising Attention

* Lets see how this works for a simple case:

?
ﬁ\ Scaled Dot-Product Attention
X = % | fetch |

?

Wathul
* 2) Compute the similarity between ‘dog(fetch)’ to “'play’
' Mask {opt.)
Splays-dog : Quinys - Ka = I : I = B [1.1]

T
Splays-fetch: Qplays K = I ' I — - [171] ) o %

* 3) Convert to Similarity to ‘scaled weights’:

Softmax forces values

* apd(f): G( Splays-dog(fetch) ) = G( - ) — u

to be in range [0,1]

DESY |

Machine Learning Intro.
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Transformers — Visualising Attention

* Lets see how this works for a simple case:

?
ﬁ\ Scaled Dot-Product Attention
X = % | fetch |

?

* 4) Form the context of ‘plays’ relative to ‘dog’ & ‘fetch’:

Cplays-dog: apd . Vd = u ' I = I [1,6]
Cplays-fetch: abe . Vf - u ' I = I [1,6]

* 5) What is the total context of ‘plays’?

|
Cplays: Cplays-dog + Cplays-fetch — + = = [176]

DESY |

Machine Learning Intro.
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Transformers — Visualising Attention

Lets see how this works for a simple case:

?
Scaled Dot-Product Attention
?

* 6) Repeat now for ‘dog’ and ‘fetch’:
Cd'.. ...... Cf
= | 1 |§=N
.
Co

DESY |

Machine Learning Intro.



141

Transformers — Visualising Attention

* Lets see how this works for a simple case:

?
@ Scaled Dot-Product Attention
; ? 4

* 6) Repeat now for ‘dog’ and ‘fetch’:

Xy =

What is the context of all
L3 T
embedding vectors to the Attention(@Q, K, V) = softmax( QK W
word ‘play’? en

DESY |

Machine Learning Intro.




Transformers — Visualising Attention -

Lets see how this works for a simple case

Otput

Probabilitics
f ? \
Xi = [ EVES

- Forward
* 6) Repeat now for ‘dog’ and ‘fetch’: = ’ The rest of the
. C e T . transformer is actually
(T v | e | | CEEED— quite simple
C= HERE ™ | [ | — just MLPs and
Cl‘ . Eq = ) *__’—;J __ adding/normalisation
Ercoang Q9 ¢ el
What is the context of all | | | ]

embedding vectors to the ; |

word ‘play’?

Figure 1: The Transformer - model architecture.

DESY |

Machine Learning Intro.
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Resources

* Books:
[1] I.Goodfellow, Y.Bengio, and A.Courville, ‘Deep Learning’, MIT Press, 2016,
http://www.deeplearningbook.org
[2] Simon J.D. Prince, ‘Understanding Deep Learning’, MIT Press, 2023,
http://udlbook.com
[3] Kevin P. Murphy, "Probabilistic Machine Learning: An introduction", MIT Press, 2022,
probml.ai

* Lectures:
[1] ATLAS-D 2023, F.Meloni, https://indico.cern.ch/event/1263122/
[2] G.Louppe, Info8010 Deep Learning, 2024,
https://github.com/glouppe/info8010-deep-learning

* Misc. :
[1] Kaare Petersen, Michael Pedersen, ‘Matriz Cookbook’, 2012,
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

ATLAS-D | Machine Learning Tutorial


http://www.deeplearningbook.org/
http://udlbook.com/
https://indico.cern.ch/event/1263122/
https://github.com/glouppe/info8010-deep-learning
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Point Estimators: Technicality of continuous variables

* Covariance: Linear correlation between two variables:

Couv(f(z), 9(y)) = E(f(z) — E[f(x)])(g(y) — Elg(y)])

* Deterministically Correlated Random Variables:
— Two random variables X & Y, such that y = g(z):

pelo) = )| 5

— In higher dimensions x & y, for x = ¢(y):

9(x)
pilo) = g [det (252




Point Estimators: Technicality of continuous variables

* Covariance: Linear correlation between two variables:

Couv(f(z), 9(y)) = E(f(z) — E[f(x)])(g(y) — Elg(y)])

py(y) 4
* Deterministically Correlated Random Variables: '
— Two random variables X & Y, such that y = g(z):
0.5
dg(z)

pelo) = mle)) |25

N >
1
pa(T) // /YG }
1
— In higher dimensions x & y, for x = ¢(y):

pel) = ) der (2522 1 >

DESY |

o
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Estimator Properties

* Point Estimator, or statistic, is any * Example — Gaussian: .
function of the data that infers from the Sample {x}n generated by a Gaussian pdf:

data some parameter of interest 0:

T — )2
6‘2 = %Z [(.”IZZ — ﬂ)2:| <t——— p(xl-|,u, U) = \/2;_7@(1) [_%(Zo-—Qlu)]

0=g({r}m)
— Bias calculation: A 9
* Bias of an estimator is given by: bias(&z) = E(02) — s2-_%
R . —— m
bias(f) = E(#) — 0 < BG?) — B l% (xl_mQ]
m-—1 5
* Variance of an estimator: ~Tm C

~

Var(6)

DESY | Machine Learning Intro.



Estimator Properties

* Point Estimator, or statistic, is any * Example — Gaussian: .
function of the data that infers from the Sample {x}n generated by a Gaussian pdf:
data some parameter of interest 0: L N ' (e — o2
9 _ g({x}m) i —1 [(% — 1) ]47 plxilp, o) = Wexp [—571
— Bias calculation:
* Bias of an estimator is given by: bias(&z) — IE((;Q) A

bias(0) = E(0) — 0 <

* Variance of an estimator:

~

Var(6)

DESY | Machine Learning Intro.



Estimator Properties

Point Estimator, or statistic, is any
function of the data that infers from the
data some parameter of interest 0:

0 = g{z}m)

Bias of an estimator is given by:

bias(0) = E(0) — 0

* Variance of an estimator:

Var(6)

* Example — Gaussian:

Sample {z}. generated by a Gaussian pdf:

m

L1 ; 1 1(z; — p)?
ILL _ m Z Z; p((El|/.L, U) = /—27T0'2€Xp [_5 o2 ]
1

— Variance calculation:

Var(fi) = Var(— Z T;) = [
‘7_
m?

DESY | Machine Learning Intro.



151

Gradient Descent

* Optimising the model fis achieved by

minimising the loss/cost function:

70
60 ® = arg min [L(f(x|P), x)]
* Gradient descent has primarily two
steps: - dL T
)
1) Calculate gradients: 8_[‘ _ QBU
Lo,
2) Update the parameters in
direction that minimises
loss: oL
Qi < Pj — v~
ol

DESY | Machine Learning Intro.
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Statistics \
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MaChlne Likelihood
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._, Mitigation
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Detection Learning
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Real Time
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High Energy Physics — ML Developments

— Checkout the HEP Machine Learning Living Review

T s wall o)
7 - -l pu(elp.6) Lslq, ()
likelihood test
by bups hi = hist(f,(d: :
{50, bup foldi) ist(f (ds)) model statistic hypothesis
data (d;) neural network  binned summary stat. test
Particle Transformer - arXiv:2202.03772
Transformer model for tagging jets at the LHC
/ outgoing particles
L blocks Class token
n \\ ~ A
A ‘,\ r—‘

\ ) ;’;:n [ Particle Particle Particle ACIHS.S o g
&’ Particles =»| 3 Attention Attention peese=== Attention “Tm]?n I E

/ w o 2| x l Block | x! | Block x| Block Bz = 3

collision pomt \ =) 'y y
N
protonbeams v’ ?
N 9’ Interactions —»| ;; v__J .
Ar e -'é .
=) (a) Particle Transformer
( collision event )—)(jet recnnstruction)—>( jet tagging )
DESY | Machine Learning Intro.



https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2202.03772
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,

0o]:
P(X e€A)= /Ap(:v)d:c

* Marginal probability density:
pla) = / p(z,y)dy

* Conditional probability density:

p(z,y)
p(z)

plylz) =

(1] kind of...see uncountable sets
DESY | Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,
oo

P (X c A) = / p(ib)dl‘ * Random Variable: Measurable function X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q FE
(o) o) [eo(o)--(@)e) | [ [2)a)(a)-- -
p(z) = [ plz,y)dy o sl
5 BT
(o)3s) )| | )
* Conditional probability density:
( |.”L') . p(a:, y) * Realisation: An instance sampled from the
Py o p(:c) random variable distribution:
r~X

(1] kind of...see uncountable sets
DESY | Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,
oo

P (X c A) = / p(ib)dl‘ * Random Variable: Measurable function X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q FE
(o) o) [ee(o)---(@)e) | [ [2)(s)(a)-- -
p(z) = [ plz,y)dy (o es sl
5 BT
(o)3s) )| | )
* Conditional probability density:
( |.”L') . p(a:, y) * Realisation: An instance sampled from the
Py o p(:c) random variable distribution:
r~X

(1] kind of...see uncountable sets
DESY | Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,
oo

P (X c A) = / p(ib)dl‘ * Random Variable: Measurable function X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q FE
(o) o) [ee(o)---(@)e) | [ [2)a)(a)--- -
p(z) = [ plz,y)dy o sl
5 BT
(o)3s) )| | e
* Conditional probability density:
( |.”L') . p(a:, y) * Realisation: An instance sampled from the
Py o p(:c) random variable distribution:
r~X

(1] kind of...see uncountable sets
DESY | Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,
oo

— xr)axr * andom Variable: Measurable function
PXeA p(x)d Random Variable: M ble f X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q E
A
(e][e) fel)-- (e 5
plx) = [ plz,y)dy (o)) L
gt a3 Sy
* Conditional probability density: tumber
( | ) . p(.’E ) y) * Realisation: An instance sampled from the
pyIr) = p(:c) random variable distribution:
r~X

(1] kind of...see uncountable sets
DESY | Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,
oo

P (X c A) = / p(ib)dl‘ * Random Variable: Measurable function X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q E
A 7
6 8
pla) = [ ple.y)dy ) | T
3 11
% 2 12
* Conditional probability density: numberq
( | ) . p(-’ﬂ ) y) * Realisation: An instance sampled from the
pyr) = p(:c) random variable distribution:
r~X

N

(1] kind of...see uncountable sets

DESY |

Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,

oo
P (X c A) = / p(ib)dl‘ * Random Variable: Measurable function X
A < : ) = F from sample to measurable space:
* Marginal probability density: Q E
P(X)
plx) = / ple,y)dy {7///}
7
* Conditional probability density: number >
( | ) . p(-’ﬂ ) y) * Realisation: An instance sampled from the
pyr) = p(:c) random variable distribution:
r~X

N

(1] kind of...see uncountable sets

DESY |

Machine Learning Intro.
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Continuous Probability

* Absolute continuous probability is the infinitesimal
sum!!l over the probability density function p : R — [0,

0o]:
P(X e€A)= /Ap(:v)d:c

* Marginal probability density:

p(z) = / p(e, y)dy

* (Non-)Conditional Independence:

* Conditional probability density: Two random variables are independent if:
p(g}j y) p(X =Ly = y) = p(X - a:‘)p(y = y)
p(y|x) — p(:c) < Veex, Vyey

(1] kind of...see uncountable sets

DESY |

Machine Learning Intro.
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Point Estimators: Expectation, bias, variance

* Expectation: Expected value of a function of random

variables xrvp[ ( )] _/ ( ) ( )d:z:

* Variance: Variation of samples from a random variable:

Var(f(z) = E | (f(x) - Elf(2))?]
* Covariance: Linear correlation between two variables:
Cou(f(z), 9(y)) = E[(f(z) = E[f(2))(g9(y) — Elg(y)])]
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