DESY Summer Program 2025 | Machine Learning Introduction ## Machine Learning 101 **DESY Summer Program 2025 | July 31st 2025** **DESY:** Stephen Jiggins Contact Info: stephen.jiggins@desy.de Portrait of Edmond de Belamy **2018**: \$432,000 painting sold at *Christie's* using a GAN method via *Obvious* must make $\mathbb{E}_{\mathbf{x}}[\log(\mathfrak{D}(\mathbf{x}))] + \mathbb{E}_{\mathbf{y}}[\log(4 \cdot \mathfrak{D}(\xi(\mathbf{y})))]$ **2018**: \$432,000 painting sold at *Christie's* using a GAN method via *Obvious* Portrait of Edmond de Belamy **2022**: Colarado state fair winner using *DALL* · *E2*. Sparks the question of morality in the age of AI realism **2018**: \$432,000 painting sold at *Christie's* using a GAN method via *Obvious* Portrait of Edmond de Belamy **2022**: Colarado state fair winner using *DALL* · *E2*. Sparks the question of morality in the age of AI realism **2023**: Tricking the world is not hard with such technology! I thought I was immune to being fooled online. Then I saw the pope in a coat *Joel Golby* An encounter with an AI-generated image of his holiness has changed me: I now have sympathy for credulous baby boomers 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 • 'A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.' - Mitchell 1997 Paper: <u>link</u> 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 Paper: <u>link</u> • 'A computer program is said to learn from **experience E** with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.' - Mitchell 1997 • Experience (E): The stimulus that drives learning, is the set of examples x, or a dataset \mathcal{D} of many examples $\mathbf{x} = \{x\}_{N}$: **Supervised:** The dataset examples have an associated label or target $\mathbf{y} = \{y\}_{\mathbb{N}}$ 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 Paper: <u>link</u> • 'A computer program is said to learn from **experience E** with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.' - Mitchell 1997 • Experience (E): The stimulus that drives learning, is the set of examples x, or a dataset \mathcal{D} of many examples $\mathbf{x} = \{x\}_{N}$: **Supervised:** The dataset examples have an associated label or target $\mathbf{y} = \{y\}_{\mathbb{N}}$ Unsupervised: The dataset examples have no labels or targets 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 • 'A computer program is said to learn from experience E with respect to some class of **tasks** T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.' - Mitchell 1997 Paper: <u>link</u> • Task (T): Given an example $x \in \mathbb{R}^n$ the model f should learn a prediction y = f(x). E.g. Classification: Assign the example to a category $f: \mathbb{R}^n \to \{1,...,k\}$ **Regression:** Predict the value of a target $f: \mathbb{R}^n \to \mathbb{R}$ 'Giving computers the ability to learn without explicitly programming them' - Arthur Samuel, 1959 Paper: <u>link</u> • 'A computer program is said to learn from experience E with respect to some class of tasks T and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E.' - Mitchell 1997 • Performance (P): Evaluate the performance of the model f **Measure Theory:** Generalisation of geometric distances for a measureable space (Ω, F) , such that for a measure $\mathbb{M}: F \to [0, +\infty]$ ### Basic Terminology - Day-to-day • **Datasets:** The data from which the algorithm will need to learn from: $$\mathcal{D} = \{ \{x_i, y_i\} \in \mathbb{R}^X \times \mathbb{R}^Y \}_{N}$$ #### Basic Terminology - Day-to-day • Datasets: The data from which the algorithm will need to learn from: $$\mathcal{D} = \{ \{x_i, y_i\} \in \mathbb{R}^X \times \mathbb{R}^Y \}_{\mathbb{N}}$$ • **Features:** Each dimension of the example x, or input space \mathbb{R}^{X} , which represents some *feature* such as pixel color, particle energy, etc...: #### Basic Terminology - Day-to-day • **Datasets:** The data from which the algorithm will need to learn from: $$\mathcal{D} = \{ \{x_i, y_i\} \in \mathbb{R}^X \times \mathbb{R}^Y \}_{N}$$ • **Features:** Each dimension of the example x, or input space \mathbb{R}^{X} , which represents some *feature* such as pixel color, particle energy, etc...: $$x \in \mathbb{R}^X$$ • Algorithms: The process in which the model f defined by a parameter set Φ is optimised according to some **objective function**: $$\Phi^* = \underset{\Phi}{\operatorname{arg min}} [f]$$ #### **DESY Summer Program 2025** | Malerton M Machine Learning Introduction ## Is ML useful? ### AI/ML Summer • The boom in ML/AI has been primarily the result of: Datasets: The vast amount of data from images curated by ImageNet to Protein Data Bank (PDB) **Processing Power:** The computational power of CPU/GPUs and now emerging accelerator platforms such as TPUs etc... • At a secondary level it is also the result of: Open-source Libraries: PyTorch (Meta), Tensorflow + JAX (Google), etc... High—Level Interpretable Languages: Julia, Python, etc... ## AI/ML Summer #### • Bio-molecular research: AlphaFold1.0 \rightarrow 3.0 has lead to substantial advancements in predicting protein structures: #### **DREAMING UP PROTEINS** Researchers used deep neural networks to invent, or 'hallucinate', sequences of amino acids that could fold into proteins; in some cases they have synthesized these proteins to compare their actual structures with predictions. Actual structure (experimentally determined) Superposition of hallucinated (blue) and actual (grey) structures **onature** # John J. Hopfield Geoffrey E. Hinton "for foundational discoveries and inventions that enable machine learning with artificial neural networks" THE ROYAL SWEDISH ACADEMY OF SCIENCE \rightarrow Checkout the HEP Machine Learning Living Review → Checkout the HEP Machine Learning Living Review #### tt | | | Event | SPA-NET Efficiency | | χ ² Efficiency | | |-----------------|-------------------|----------|--------------------|-----------|---------------------------|-----------| | | N _{jets} | Fraction | Event | Top Quark | Event | Top Quark | | All Events | == 6 | 0.245 | 0.643 | 0.696 | 0.424 | 0.484 | | | == 7 | 0.282 | 0.601 | 0.667 | 0.389 | 0.460 | | | ≥ 8 | 0.320 | 0.528 | 0.613 | 0.309 | 0.384 | | | Inclusive | 0.848 | 0.586 | 0.653 | 0.392 | 0.457 | | Complete Events | == 6 | 0.074 | 0.803 | 0.837 | 0.593 | 0.643 | | | == 7 | 0.105 | 0.667 | 0.754 | 0.413 | 0.530 | | | ≥ 8 | 0.145 | 0.521 | 0.662 | 0.253 | 0.410 | | | Inclusive | 0.325 | 0.633 | 0.732 | 0.456 | 0.552 | #### ttH | | | Event | SPA-NET Efficiency | | χ ² Efficiency | | | | |-----------------|-------------------|----------|--------------------|-------|---------------------------|-------|-------|-------| | | N _{jets} | Fraction | Event | Higgs | Top | Event | Higgs | Top | | All Events | == 8 | 0.261 | 0.370 | 0.497 | 0.540 | 0.044 | 0.151 | 0.053 | | | == 9 | 0.313 | 0.343 | 0.492 | 0.514 | 0.038 | 0.146 | 0.066 | | | ≥ 10 | 0.313 | 0.294 | 0.472 | 0.473 | 0.030 | 0.135 | 0.072 | | | Inclusive | 0.972 | 0.330 | 0.485 | 0.502 | 0.039 | 0.146 | 0.062 | | Complete Events | == 8 | 0.042 | 0.532 | 0.657 | 0.663 | 0.016 | 0.151 | 0.063 | | | == 9 | 0.070 | 0.422 | 0.601 | 0.596 | 0.013 | 0.146 | 0.076 | | | ≥ 10 | 0.115 | 0.306 | 0.545 | 0.523 | 0.008 | 0.134 | 0.080 | | | Inclusive | 0.228 | 0.383 | 0.583 | 0.572 | 0.012 | 0.144 | 0.073 | → Checkout the HEP Machine Learning Living Review # **Typical** signal classification in data analyses, e.g. Higgs discovery: | Analysis | Years of data collection | Sensitivity
without machine
learning | Sensitivity
with machine
learning | Ratio
of <i>P</i>
values | Additional
data
required | |--|--------------------------|--|---|--------------------------------|--------------------------------| | $ \begin{array}{c} C M S^{24} \\ H \to \gamma \gamma \end{array} $ | 2011-2012 | 2.2σ , $P = 0.014$ | 2.7σ , $P = 0.0035$ | 4.0 | 51% | | ATLAS ⁴³ $H \rightarrow \tau^+\tau^-$ | 2011-2012 | P = 0.0062 | 3.4σ , $P = 0.00034$ | 18 | 85% | | ATLAS ⁹⁹
$VH \rightarrow bb$ | 2011-2012 | 1.9σ , $P = 0.029$ | 2.5σ , $p = 0.0062$ | 4.7 | 73% | | ATLAS ⁴¹
$VH \rightarrow bb$ | 2015-2016 2 | 2.8σ , $P = 0.0026$ | 3.0σ , $P = 0.00135$ | 1.9 | 15% | | CMS^{100}
$VH \rightarrow bb$ | 2011-2012 | $1.4\sigma, P = 0.081$ | 2.1σ , $P = 0.018$ | 4.5 | 125% | → Checkout the HEP Machine Learning Living Review → Checkout the HEP Machine Learning Living Review #### DESY Summer Program 2025 | Machine Learning Introduction # **Learning Law** #### Machine Learning versus Algorithm Development ## Learning Law • Four key parts to the 'Machine Learning' process: # $egin{aligned} & ext{Dataset:} \ & ext{Supervised:} \ \mathcal{D} = \{ \ \{x_{i} \ , \ y_{i}\} \in \mathbb{R}^{X} imes \mathbb{R}^{Y} \}_{ ext{N}} \ & ext{Unsupervised:} \ & \mathcal{D} = \{ \ \{x_{i}\} \in \mathbb{R}^{X} \ \}_{ ext{N}} \end{aligned}$ ## Learning Law • Four key parts to the 'Machine Learning' process: #### Model f: E.g. Neural network with parameters Φ #### Learning Law • Four key parts to the
'Machine Learning' process: #### Learning Law - Recipe • Four key parts to the 'Machine Learning' process: #### DESY Summer Program 2025 | Machine Learning Introduction ## **Brief Statistics Review** #### Frequentist Statistics • **Probability** is attributed only to the data **x**, meaning probability of outcomes is obtained by repeatable experiments: $$P(\mathbf{x} = x) = \lim_{n \to \infty} \frac{n_x}{N}$$ • Conditional probability, the probability of an outcome $(\mathbf{x}=x)$ conditioned on the occurance of another random process $(\mathbf{y}=y)$: $$P(\mathbf{x} = x | \mathbf{y} = y) = \frac{P(\mathbf{x} = x, \mathbf{y} = y)}{P(\mathbf{x} = x)}$$ • Important to note that frequentist statistics assumes that the data is drawn from $p(\mathbf{x}=x \mid \boldsymbol{\theta})$, with a set of parameters that characterise the underlying true distribution $\boldsymbol{\theta}$. #### Frequentist Statistics • **Probability** is attributed only to the data **x**, meaning probability of outcomes is obtained by repeatable experiments: $$P(\mathbf{x} = x) = \lim_{n \to \infty} \frac{n_x}{N}$$ • Conditional probability, the probability of an outcome $(\mathbf{x}=x)$ conditioned on the occurance of another random process $(\mathbf{y}=y)$: $$P(\mathbf{x} = x | \mathbf{y} = y) = \frac{P(\mathbf{x} = x, \mathbf{y} = y)}{P(\mathbf{x} = x)}$$ • Important to note that frequentist statistics assumes that the data is drawn from $p(\mathbf{x}=x \mid \boldsymbol{\theta})$, with a set of parameters that characterise the underlying true distribution $\boldsymbol{\theta}$. #### Bayesian Statistics • **Probability** is a degree of belief meaning that the observed data **x**, is not necessarily defined by repeatability: $$P(H|\mathbf{x} = x) = \frac{P(\mathbf{x} = x|H)P(H)}{\int P(\mathbf{x} = x|H)P(H)dH}$$ Normalise over all possible hypotheses ~ marginal probability $$= \frac{P(\mathbf{x} = x|H)P(H)}{P(\mathbf{x} = x)}$$ #### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ 14 #### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ Recall on slide 14 of this lecture that from a mathematical perspective a ML model is the set of optimal parameter that match data and predictions! #### Basic Terminology - Day-to-day • Datasets: The data from which the algorithm will need to learn from: $$\mathcal{D} = \{ \{x_i, y_i\} \in \mathbb{R}^X \times \mathbb{R}^Y \}_{N}$$ Features: Each dimension of the example x, or input space R^X, which represents some feature such as pixel color, particle energy, etc...: $$x \in \mathbb{R}^X$$ Algorithms: The process in which the model f defined by a parameter set Φ is optimised according to some objective function: $$\Phi^* = \underset{\Phi}{\operatorname{arg min}} [f]$$ DESY | Mac #### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • Is there a recipe for extracting from the data the optimal parameters or **best estimator?** #### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • Is there a recipe for extracting from the data the optimal parameters or **best** estimator? → Maximum Likelihood Method: General approach to estimating the point estimator $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} p(\{x\}_m | \theta)$$ $$= \underset{\theta}{\operatorname{arg max}} \prod_{i} p(x | \theta)$$ Log-likelihood is preferred for numerical stability: $$-\ln(\mathcal{L}(\theta|\{x\}_m)) = -\sum_{i=1}^{m} \ln p(x_i|\theta)$$ #### Maximum Likelihood Method: In a counting experiment, *model* data as Gaussian distributed: $$p(x_i|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right]$$ #### Maximum Likelihood Method: In a counting experiment, *model* data as Gaussian distributed: $$p(x_i|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right]$$ Fill in the maximum likelihood formula: $$-\ln(\mathcal{L}(\theta|\{x\}_m)) = -\sum_{i=1}^{m} \ln p(x_i|\theta) = -\sum_{i=1}^{m} \ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{(x_i - \mu)^2}{2\sigma^2}$$ #### Maximum Likelihood Method: In a counting experiment, *model* data as Gaussian distributed: $$p(x_i|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right]$$ Fill in the maximum likelihood formula: $$-\ln(\mathcal{L}(\theta|\{x\}_m)) = -\sum_{i=1}^{m} \ln p(x_i|\theta) = -\sum_{i=1}^{m} \ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{(x_i - \mu)^2}{2\sigma^2}$$ We have some $data \{x\}_m$ which forms an empirical distribution (more on this later), lets **maximise** the likelihood: $$\frac{\partial}{\partial \theta} \left(-\ln \mathcal{L}(\theta | \{x\}_m) \right) \mapsto -\frac{1}{\sigma^2} \sum_{i=1}^m (x_i - \mu) = \sum_{i=1}^m x_i - m\mu = 0$$ #### Maximum Likelihood Method: In a counting experiment, *model* data as Gaussian distributed: $$p(x_i|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right]$$ Fill in the maximum likelihood formula: $$-\ln(\mathcal{L}(\theta|\{x\}_m)) = -\sum_{i=1}^{m} \ln p(x_i|\theta) = -\sum_{i=1}^{m} \ln(\frac{1}{\sqrt{2\pi\sigma^2}}) - \frac{(x_i - \mu)^2}{2\sigma^2}$$ We have some $data \{x\}_m$ which forms an empirical distribution (more on this later), lets **maximise** the likelihood: $$\frac{\partial}{\partial \theta} \left(-\ln \mathcal{L}(\theta | \{x\}_m) \right) \mapsto -\frac{1}{\sigma^2} \sum_{i=1}^m (x_i - \mu) = \sum_{i=1}^m x_i - m\mu = 0$$ With a bit of algebra we have derived the **sample mean** • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P} \left[I(x) \right] = -\mathbb{E}_{x \sim P} \left[\ln(P(x)) \right]$$ • Relative Entropy between two distributions P(x) and Q(x): $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ #### **Key Points:** - I) Data with low probability has high information content - II) Independent data samples are additive: $I(x_1 \oplus x_2) = I(x_1) + I(x_2)$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P} [I(x)] = -\mathbb{E}_{x \sim P} [\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P} [I(x)] = -\mathbb{E}_{x \sim P} [\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$= \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Self-Information: $$I(x) = -\ln(P(x))$$ • Uncertainty in an entire distribution P(x) – Shannon Entropy: $$H(x) = \mathbb{E}_{x \sim P}[I(x)] = -\mathbb{E}_{x \sim P}[\ln(P(x))]$$ $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(\frac{P(x)}{Q(x)} \right) \right]$$ $$=
\mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Intuitive understanding of the maximum likelihood comes from the idea of *distance* between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Intuitive understanding of the maximum likelihood comes from the idea of *distance* between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ • Intuitive understanding of the maximum likelihood comes from the idea of *distance* between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min\left[\int p(x)\log(p(x))dx - \int p(x)\log(q(x|\theta))dx\right]$$ • Intuitive understanding of the maximum likelihood comes from the idea of distance between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min\left[\int p(x)\log(p(x))dx - \int p(x)\log(q(x|\theta))dx\right]$$ $$\hat{\theta} = \arg\min\left[-\int p(x)\log(q(x|\theta))dx\right]$$ • Intuitive understanding of the maximum likelihood comes from the idea of distance between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min\left[\int p(x)\log(p(x))dx - \int p(x)\log(q(x|\theta))dx\right]$$ $$\hat{\theta} = \arg\min\left[-\int p(x)\log(q(x|\theta))dx\right]$$ $$p(x) = \frac{1}{m} \sum_{i=1}^{m} \delta(x - x_i)$$ • Intuitive understanding of the maximum likelihood comes from the idea of distance between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min\left[\int p(x)\log(p(x))dx - \int p(x)\log(q(x|\theta))dx\right]$$ $$\hat{\theta} = \arg\min \left[-\int \left[\frac{1}{m} \sum_{i}^{m} \delta(x - x_{i}) \right] \log(q(x|\theta)) dx \right]$$ $$p(x) = \frac{1}{m} \sum_{i=0}^{m} \delta(x - x_i)$$ • Intuitive understanding of the maximum likelihood comes from the idea of *distance* between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \ \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ • Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min \left[-\frac{1}{m} \sum_{i}^{m} \log(q(x_i|\theta)) \right]$$ **Intuitive understanding** of the maximum likelihood comes from the idea of distance between two distribution $$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log(p_{\text{model}}(x|\theta)) \right]$$ Kullback-Leibler Divergence is equivalent to maximum likelihood – lets see how this works: $$\mathcal{D}_{\mathrm{KL}}(P||Q) = \mathbb{E}_{x \sim P} \left[\ln \left(P(x) \right) - \ln \left(Q(x) \right) \right]$$ $$\hat{\theta} = \arg\min \left[-\frac{1}{m} \sum_{i}^{m} \log(q(x_i|\theta)) \right] \qquad \hat{\theta} = \arg\min \mathbb{E}_{x \sim p} \left[-\log(q(x|\theta)) \right]$$ $$\hat{\theta} = \arg \min \mathbb{E}_{x \sim p} \left[-\log(q(x|\theta)) \right]$$ ## DESY Summer Program 2025 | Machine Learning Introduction **Learning Process & Estimators** ## Learning Law • Four key parts to the 'Machine Learning' process: # $\begin{aligned} & \text{Dataset:} \\ & \text{Supervised:} \\ \mathcal{D} = \{ \ \{x_i \,, \, y_i\} \in \mathbb{R}^{\scriptscriptstyle X} \times \mathbb{R}^{\scriptscriptstyle Y} \}_{\scriptscriptstyle N} \\ & \text{Unsupervised:} \\ \mathcal{D} = \{ \ \{x_i \,\} \in \mathbb{R}^{\scriptscriptstyle X} \}_{\scriptscriptstyle N} \end{aligned}$ • Supervised learning: Examples $\mathbf{x} = \{x\}_{m}$ paired with targets $\mathbf{y} = \{y\}_{m}$ that instruct the algorithm on what to learn • Unsupervised learning: Examples $\mathbf{x} = \{x\}_{\text{m}}$ with no targets p(x) $\begin{aligned} & \text{Dataset:} \\ & \text{Supervised:} \\ \mathcal{D} = \{ \ \{x_i, \ y_i\} \in \mathbb{R}^{X} \times \mathbb{R}^{Y} \}_{N} \\ & \text{Unsupervised:} \\ & \mathcal{D} = \{ \ \{x_i\} \in \mathbb{R}^{X} \}_{N} \end{aligned}$ #### • Supervised learning: Examples $\mathbf{x} = \{x\}_{m}$ paired with targets $\mathbf{y} = \{y\}_{m}$ that instruct the algorithm on what to learn $$p(y|x)$$ Conditional Density Estimation #### • Unsupervised learning: Examples $\mathbf{x} = \{x\}_{m}$ with no targets p(x) Density Estimation Dataset: Supervised: $= \{ \{x_i, y_i\} \in \mathbb{R}^x \times \mathbb{R}^y \}_N$ Unsupervised: $= \{ \{x_i\} \in \mathbb{R}^x \}_N$ #### • Supervised learning: Examples $\mathbf{x} = \{x\}_{m}$ paired with targets $\mathbf{y} = \{y\}_{m}$ that instruct the algorithm on what to learn $$p(y|x)$$ Conditional Density Decomposing the problem into m-1 conditional density estimation problems \sim supervised learning problems Examples $\mathbf{x} = \{x\}_{m}$ with no targets $$p(x)$$ Densit Density Estimation $$p(\{x\}_m) = \prod_{i}^m p(x_i | \{x\}_{m-i})$$ Dataset: Supervised: = $\{ \{x_i, y_i\} \in \mathbb{R}^x \times \mathbb{R}^y \}_N$ Unsupervised: = $\{ \{x_i\} \in \mathbb{R}^x \}_N$ • Supervised learning: Examples $\mathbf{x} = \{x\}_{m}$ paired with targets $\mathbf{y} = \{y\}_{m}$ that instruct the algorithm on what to learn $$p(y|x)$$ Conditional Density Estimation • Unsupervised learning: Examples $\mathbf{x} = \{x\}_{m}$ with no targets Density Estimation $$p(\{y\}_m | \{x\}_m) = \frac{p(\{x\}_m, \{y\}_m)}{\sum_{\tilde{y}} p(\{x\}_m, \{\tilde{y}\}_m)}$$ Learning the joint distribution p(x,y) via unsupervised learning techniques, then infer. $\begin{array}{c} \text{Dataset:} \\ \text{Supervised:} \\ \mathcal{D} = \{ \ \{x_i, \ y_i\} \in \mathbb{R}^{\scriptscriptstyle X} \times \mathbb{R}^{\scriptscriptstyle Y} \}_{\scriptscriptstyle N} \\ \text{Unsupervised:} \\ \mathcal{D} = \{ \ \{x_i\} \in \mathbb{R}^{\scriptscriptstyle X} \}_{\scriptscriptstyle N} \end{array}$ • Supervised learning: Examples $\mathbf{x} = \{x\}_{m}$ paired with targets $\mathbf{y} = \{y\}_{m}$ that instruct the algorithm on what to learn • Unsupervised learning: Examples $$\mathbf{x} = \{x\}_{m}$$ with no targets Linear Regression Example E.g. Neural network with parameters Φ • Parametric linear model: $$\hat{y} = \boldsymbol{w}^T \mathbf{x}$$ • Configurable parameters of model $\Phi = w$ $$\mathbf{y} = egin{pmatrix} w_1, \ \dots, \ w_n \end{pmatrix} egin{pmatrix} x_1, \ \dots \ x_n \end{pmatrix}$$ ## Performance Measure: Loss Function Loss/Cost Function $\mathcal{L}(f,x)$: Function for calculating agreement between prediction of model and implicit data distribution • Parametric linear model: $$\hat{y} = \boldsymbol{w}^T \mathbf{x}$$ • Configurable parameters of model $\Phi = w$ $$\mathbf{y} = egin{pmatrix} w_1, \ \dots, \ w_n \end{pmatrix} egin{pmatrix} x_1, \ \dots \ x_n \end{pmatrix}$$ • Loss: Mean squared error $$\mathcal{L} = \frac{1}{m} \sum_{i} (\hat{y} - y)^2$$ Linear Regression Example ## Performance Measure: Loss Function Loss/Cost Function $\mathcal{L}(f,x)$: Function for calculating agreement between prediction of model and implicit data distribution Parametric linear model: $$\hat{y} = \boldsymbol{w}^T \mathbf{x}$$ • Configurable parameters of model $\Phi = w$ $$\mathrm{y} = egin{pmatrix} w_1, \ ..., \ w_n \end{pmatrix} egin{pmatrix} x_1, \ ... \ x_n \end{pmatrix}$$ • Loss: Mean squared error $$\mathcal{L} = \frac{1}{m} \sum_{i} (\hat{y} - y)^{2}$$ Why the mean squared error? Linear Regression Example Optimise parameters Φ : • I said there was a general likelihood approach to estimating/learning parameters: $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \ln p(x_i|\theta)$$ • General MLE estimate also applies to conditional probability: $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \ln \left(p(y_i | x_i, \theta) \right)$$ Linear Regression Example Optimise parameters Φ : #### • Probabilistic view of regression: Data generated with an error term that is gaussian distributed, meaning repeated experiments have some noise: $$y_i = \alpha x_i + e_i \qquad y_i \sim \mathcal{N}(\alpha x_i, \sigma)$$ $$e_i \sim \mathcal{N}(0, \sigma)$$ # Optimise parameters
Φ : #### • Probabilistic view of regression: Data generated with an error term that is gaussian distributed, meaning repeated experiments have some noise: $$y_i = \alpha x_i + e_i \qquad y_i \sim \mathcal{N}(\alpha x_i, \sigma)$$ $$e_i \sim \mathcal{N}(0, \sigma)$$ # Optimise parameters Φ : #### Probabilistic view of regression: Data generated with an error term that is gaussian distributed, meaning repeated experiments have some noise: $$y_i = \alpha x_i + e_i \qquad \longrightarrow \qquad y_i \sim \mathcal{N}(\alpha x_i, \sigma)$$ $$e_i \sim \mathcal{N}(0, \sigma)$$ $$p(y_i|x_i,\alpha) = \mathcal{N}(y_i|\hat{y}_i,\sigma) = \mathcal{N}(y_i|\alpha x_i,\sigma)$$ ### Maximum Likelihood Approach Optimise parameters Φ : Generalise MLE estimate the conditional probability: $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \ln(p(y_i|x_i, \theta)) p(y_i|x_i, \alpha)$$ • Probabilistic view of regression: $=\mathcal{N}(y_i|\alpha x_i,\sigma)$ $$\hat{\alpha} = \underset{\theta}{\operatorname{arg max}} \sum_{i}^{m} \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}}} \right)$$ $p(y_i|x_i,\alpha) = \mathcal{N}(y_i|\alpha x_i,\sigma)$ ### Maximum Likelihood Approach Optimise parameters Φ : Generalise MLE estimate the conditional probability: $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \ln(p(y_i|x_i, \theta))$$ $$p(y_i|x_i, \alpha)$$ • Probabilistic view of regression: $$\hat{\alpha} = \underset{\theta}{\operatorname{arg max}} \sum_{i}^{m} \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}}} \right)^{-1}$$ $$= -m \ln(\sigma) - \frac{m}{2} \ln(2\pi) - \sum_{i}^{m} \frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}}$$ ### Maximum Likelihood Approach Generalise MLE estimate the conditional probability: $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{m} \ln(p(y_i|x_i, \theta))$$ • Probabilistic view of regression: $$\hat{\alpha} = \underset{\theta}{\operatorname{arg max}} \sum_{i}^{m} \ln \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}}} \right)$$ $$= -m \ln(\sigma) - \frac{m}{2} \ln(2\pi) - \sum_{i}^{m} \frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}}$$ Maximising the log-likelihood is equivalent to Mean Squared Error minimisation Optimisation algorithm ### Gradient Descent Optimise parameters Φ : Optimisation algorithm #### • First Order Gradient Descent: $$\nabla_{\boldsymbol{w}} \text{MSE}_{\text{train}} = 0$$ $$\Rightarrow \nabla_{\boldsymbol{w}} \frac{1}{m} || \hat{\boldsymbol{y}}^{(\text{train})} - \boldsymbol{y}^{(\text{train})} ||_{2}^{2} = 0$$ $$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} || \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} ||_{2}^{2} = 0$$ $$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right)^{\top} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right) = 0$$ $$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train}) \top} \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - 2 \boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train}) \top} \boldsymbol{y}^{(\text{train})} + \boldsymbol{y}^{(\text{train}) \top} \boldsymbol{y}^{(\text{train})} \right) = 0$$ $$\Rightarrow 2 \boldsymbol{X}^{(\text{train}) \top} \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - 2 \boldsymbol{X}^{(\text{train}) \top} \boldsymbol{y}^{(\text{train})} = 0$$ $$\Rightarrow \boldsymbol{w} = \left(\boldsymbol{X}^{(\text{train}) \top} \boldsymbol{X}^{(\text{train})} \right)^{-1} \boldsymbol{X}^{(\text{train}) \top} \boldsymbol{y}^{(\text{train})}$$ Linear Regression Example # Capacity & Bias-Variance Trade-Off • Capacity of a model ~ the number of degrees of freedom that can be tuned 1st Order Polynomial: $$\hat{y} = wx + b$$ 2nd Order Polynomial: $$\hat{y} = w_1 x + w_2 x^2 + b$$ • . 9th Order Polynomial: $\hat{y} = \sum_{i}^{9} w_i x^i + b$ ## Capacity & Bias-Variance Trade-Off • Capacity of a model ~ the number of degrees of freedom that can be tuned 1st Order Polynomial: $$\hat{y} = wx + b$$ 2nd Order Polynomial: $$\hat{y} = w_1 x + w_2 x^2 + b$$. 9th Order Polynomial: $$\hat{y} = \sum_{i}^{9} w_i x^i + b$$ Under/Over-fitting avoided by matching capacity of model to complexity of the problem ### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • **Bias** of an estimator is given by: $$bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$ • Variance of an estimator: $$Var(\hat{\theta})$$ ### **Estimators** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • **Bias** of an estimator is given by: $$bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$ • Variance of an estimator: $$Var(\hat{\theta})$$ # Capacity & Bias-Variance Trade-Off #### • **Bias-Variance** trade-off: $$\begin{aligned} \text{MSE}(\hat{\theta}, \theta) &= \mathbb{E} \left[(\hat{\theta} - \theta)^2 \right] \\ &= \mathbb{E} \left[\hat{\theta}^2 - 2\hat{\theta}\theta + \theta^2 \right] \\ &= \mathbb{E} \left[\hat{\theta}^2 \right] - 2\mathbb{E} \left[\hat{\theta} \right] \theta + \theta^2 \\ &= \text{Var}(\hat{\theta}) + \mathbb{E} \left[\hat{\theta} \right]^2 - 2\mathbb{E} \left[\hat{\theta} \right] \theta + \theta^2 \\ &= \text{Var}(\hat{\theta}) + \text{bias}(\hat{\theta})^2 \end{aligned}$$ DESY Summer Program 2025 | Machine Learning Introduction # Learning Recipe **General recipe** for *most* ML algorithms or learning processes: General recipe for most ML algorithms or learning processes: #### Experience • Supervised learning: Examples $\mathbf{x} = \{x\}_{\text{m}}$ paired with targets $\mathbf{y} = \{y\}_{\text{m}}$ that instruct the algorithm on what to learn $$p(y|x)$$ Conditional Density Estimation • Unsupervised learning: Examples $$\mathbf{x} = \{x\}_m$$ with no targets $$p(x)$$ Density Estimation #### Dataset: Supervised: $$\mathcal{D} = \{ \{x_i, y_i\} \in \mathbb{R}^X \times \mathbb{R}^Y \}_{\mathbb{N}}$$ Unsupervised: $$\mathcal{D} = \{ \{x_i\} \in \mathbb{R}^X \}_N$$ **General recipe** for *most* ML algorithms or learning processes: #### Task • Parametric linear model: $$\hat{y} = \boldsymbol{w}^T \mathbf{x}$$ • Configurable parameters of model $\Phi = w$ $$y = (w_1, ..., w_n)$$ $$\begin{cases} x_1, \\ \vdots \\ x_n \end{cases}$$ # General recipe for most ML algorithms or learning processes: #### Performance • Generalise MLE estimate the conditional probability: $$\hat{\theta} = \arg\max_{\theta} \sum_{i}^{m} \ln\left(p(y_i|x_i, \theta)\right)$$ • Probabilistic view of regression: $$\begin{split} \hat{m} &= \arg\max_{\theta} \sum_{i}^{m} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(\alpha x_{i} - y_{i})^{2}}{2\sigma^{2}}} \\ &= -m \log(\sigma) - \frac{m}{2} \log(2\pi) - \sum_{i}^{m} \frac{(\alpha x_{i} - \mu)^{2}}{2\sigma^{2}} \end{split}$$ # General recipe for most ML algorithms or learning processes: #### • First Order Gradient Descent: $$\nabla_w MSE_{train} = 0$$ (5.6) $$\Rightarrow \nabla_{\boldsymbol{w}} \frac{1}{m} ||\hat{\boldsymbol{y}}^{(\text{train})} - \boldsymbol{y}^{(\text{train})}||_2^2 = 0 \tag{5.7}$$ $$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} || \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} ||_{2}^{2} = 0 \qquad (5.8)$$ $$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right)^{\top} \left(\boldsymbol{X}^{(\text{train})} \boldsymbol{w} - \boldsymbol{y}^{(\text{train})} \right) = 0 \quad (5.9)$$ $$\Rightarrow \nabla_{\boldsymbol{w}} \left(\boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train})\top} \boldsymbol{X}^{(\text{train})} \boldsymbol{w} - 2 \boldsymbol{w}^{\top} \boldsymbol{X}^{(\text{train})\top} \boldsymbol{y}^{(\text{train})} + \boldsymbol{y}^{(\text{train})\top} \boldsymbol{y}^{(\text{train})} \right) = 0$$ (5.10) $$\Rightarrow 2X^{(\text{train})\top}X^{(\text{train})}w - 2X^{(\text{train})\top}y^{(\text{train})} = 0$$ (5.10) $$\Rightarrow \boldsymbol{w} = \left(\boldsymbol{X}^{(\text{train})\top}\boldsymbol{X}^{(\text{train})}\right)^{-1}\boldsymbol{X}^{(\text{train})\top}\boldsymbol{y}^{(\text{train})}$$ (5.12) **General recipe** for *most* ML algorithms or learning processes: Are we done? General recipe for most ML algorithms or learning processes: #### Are we done? • How do we change the **family of functions** that a model learns? Scale capacity? ### DESY Summer Program 2025 | Machine Learning Introduction # **Neural Networks** ### Neuron • Building block of neural networks: $$\mathbf{a}_{i}^{(k+1)} = \phi \left(\sum_{j}^{n} w_{i,j}^{(k)} a_{j}^{(k)} + b^{(k)} \right)$$ ### Neuron \rightarrow Layer • Building block of neural networks: $$a_i^{(k+1)} = \phi \left(\sum_{j=1}^n w_{i,j}^{(k)} a_j^{(k)} + b^{(k)} \right)$$ Where, $a^{(k)}_{i}$ is the activation value, and the $\Phi = \{w^{(k)}_{i}, b^{(k)}\}$ are the configurable weights & biases • **Neural Network** layer is the combination of many neurons densely connected (mostly...): $$\begin{bmatrix} a_0^{(k+1)} \\ \dots \\ a_n^{(k+1)} \end{bmatrix} = \phi \left(\begin{bmatrix} w_0^{(0)} & \dots & w_n^{(0)} \\ \dots & \dots & \dots \\ w_0^{(k)} & w_n^{(k)} \end{bmatrix} \begin{bmatrix} a_0^{(k)} \\ \dots \\ a_n^{(k)} \end{bmatrix} + \begin{bmatrix} b_0^{(k)} \\ \dots \\ b_n^{(k)} \end{bmatrix} \right)$$ ### Neural Network • A **total network** is therefore: $$\mathbf{a}^{(1)} = \phi \left(\mathbf{W}^{(0)} \mathbf{x} + \beta^{(0)} \right)$$ $$\vdots$$ $$\mathbf{a}^{(k)} = \phi \left(\mathbf{W}^{(k-1)} \mathbf{a}^{(k-1)} + \beta^{(k-1)} \right)$$ $$\vdots$$ $$\mathbf{s}(\mathbf{x}) = \mathbf{W}^{(k)} \mathbf{a}^{(k)} + \beta^{(k)}$$ - ϕ is the activation function, which can take many forms -
Optimisation is done via typically gradient based descent algorithms ### Stochastic Gradient Descent - Stochastic Gradient Descent is an adaptation of gradient descent: - 1) Calculate gradients: $$\frac{\partial \mathcal{L}}{\partial \Phi} = \begin{bmatrix} \frac{d\mathcal{L}}{\partial \phi_0} \\ \dots \\ \frac{d\mathcal{L}}{\partial \phi_b} \end{bmatrix}$$ 2) Update the parameters in direction that minimises loss: $$\phi_i^{(t+1)} \leftarrow \phi_i^{(t)} - \alpha. \sum_{j \in \mathcal{B}_t} \frac{\partial \mathcal{L}_j}{\partial \phi_{i,j}^{(t)}}$$ • Batch based training with iterative updates to the gradients based on an **epoch** 't', but the key goal is to learn: $$rac{\partial \mathcal{L}_j}{deta_j^{(k)}} \qquad rac{\partial \mathcal{L}_j}{d\mathbf{W}_j^{(k)}}$$ $\mathbf{s}(\mathbf{x}) = \mathbf{W}^{(k)} \mathbf{a}^{(k)} + \beta^{(k)}$ 101 • Chain rule used to decompose the differential behaviour of the loss \mathcal{L} per-layer (intermediate) variables in reverse order: $$\frac{\partial y}{\partial x^{(1)}} = \frac{\partial x^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(3)}}{\partial x^{(2)}} \frac{\partial y}{\partial x^{(3)}}$$ • Chain rule used to decompose the differential behaviour of the loss \mathcal{L} per-layer (intermediate) variables in reverse order: $$\frac{\partial y}{\partial x^{(1)}} = \frac{\partial x^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(3)}}{\partial x^{(2)}} \frac{\partial y}{\partial x^{(3)}}$$ • Chain rule used to decompose the differential behaviour of the loss \mathcal{L} per-layer (intermediate) variables in reverse order: $$\frac{\partial y}{\partial x^{(1)}} = \frac{\partial x^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(3)}}{\partial x^{(2)}} \frac{\partial y}{\partial x^{(3)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \phi_{j}^{(k)}} = \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \phi_{j}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}}$$ #### 104 # Backwards Propagation – Optimisation Algorithm • Chain rule used to decompose the differential behaviour of the loss \mathcal{L} per-layer (intermediate) variables in reverse order: $$\frac{\partial y}{\partial x^{(1)}} = \frac{\partial x^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(3)}}{\partial x^{(2)}} \frac{\partial y}{\partial x^{(3)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}} = \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \phi_{j}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k-1)}} = \frac{\partial \phi_{j}^{(k)}}{\partial \mathbf{a}_{j}^{(k-1)}} \left(\frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \phi^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}} \right)$$ • Chain rule used to decompose the differential behaviour of the loss \mathcal{L} per-layer (intermediate) variables in reverse order: $$\frac{\partial y}{\partial x^{(1)}} = \frac{\partial x^{(2)}}{\partial x^{(1)}} \frac{\partial x^{(3)}}{\partial x^{(2)}} \frac{\partial y}{\partial x^{(3)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \boldsymbol{\alpha}_{j}^{(k)}} = \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \boldsymbol{\phi}_{j}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k-1)}} = \frac{\partial \boldsymbol{\phi}_{j}^{(k)}}{\partial \mathbf{a}_{j}^{(k-1)}} \left(\frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \boldsymbol{\phi}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}} \right)$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \boldsymbol{\phi}_{j}^{(k-1)}} = \frac{\partial \mathbf{a}_{j}^{(k-1)}}{\partial \boldsymbol{\phi}_{j}^{(k-1)}} \left(\frac{\partial \boldsymbol{\phi}_{j}^{(k)}}{\partial \mathbf{a}_{j}^{(k-1)}} \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \boldsymbol{\phi}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}} \right)$$ • Chain rule again used to decompose the differential behaviour of the loss \mathcal{L} per-parameter $\Phi = \{ W, \beta \}$: $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{W}_{j}^{(k)}} = \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \mathbf{W}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{j}^{(k)}}$$ $$\frac{\partial \mathcal{L}_{j}}{\partial \beta_{i}^{(k)}} = \frac{\partial \mathbf{a}_{j}^{(k)}}{\partial \beta_{i}^{(k)}} \frac{\partial \mathcal{L}_{j}}{\partial \mathbf{a}_{i}^{(k)}}$$ $$\frac{\partial \mathcal{L}_j}{\partial \mathbf{a}_j^{(k-1)}} = \frac{\partial \phi_j^{(k)}}{\partial \mathbf{a}_j^{(k-1)}} \left(\frac{\partial \mathbf{a}_j^{(k)}}{\partial \phi^{(k)}} \frac{\partial \mathcal{L}_j}{\partial \mathbf{a}_j^{(k)}} \right)$$ General recipe for most ML algorithms or learning processes: #### Are we done? How do we change the **family of functions** that a model learns? Scale capacity? • What if we want to predict a discrete value and not a continuous value (classification)? ### **Activation Functions** - Choice of ϕ activation functions is pathological - Decisions based on an array of factors - The most common is the concept of **vanishing gradients**: $$\frac{\partial \mathcal{L}_{j}}{\partial \mathbf{W}_{j}^{(k-2)}} = \frac{\partial \mathbf{a}_{j}^{(k-2)}}{\partial \mathbf{W}_{j}^{(k-2)}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-2)} \partial \phi^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \end{pmatrix}}_{\mathbf{Sigmoid}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \\ \partial \mathbf{a}_{j}^{(k)} \end{pmatrix}}_{\mathbf{Sigmoid}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \\ \partial \mathbf{a}_{j}^{(k)} \end{pmatrix}}_{\mathbf{Sigmoid}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \\ \partial \mathbf{a}_{j}^{(k)} \partial \mathbf{a}_{j}^{(k)} \end{pmatrix}}_{\mathbf{Sigmoid}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \partial \mathbf{a}_{j}^{(k)} \\ \partial \mathbf{a}_{j}^{(k)} \partial \mathbf{a}_{j}^{(k)} \partial \mathbf{a}_{j}^{(k)} \partial \mathbf{a}_{j}^{(k)} \end{pmatrix}}_{\mathbf{Sigmoid}} \underbrace{\begin{pmatrix} \partial \phi_{j}^{(k-1)} \partial \mathbf{a}_{j}^{(k-1)} \\ \partial \mathbf{a}_{j}^{(k-1)} \partial \phi^{(k)} \partial \mathbf{a}_{j}^{(k)} \mathbf{a}_{j}^{(k$$ • Task: Classify using a dataset drawn from a joint distribution p(x,y): Features $x \in \mathbb{R}^n$ Labels $y \in \mathbb{R}$ • Goal is to predict y given an instance of x: $p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y = 1)}{p(\mathbf{x})}$ • Task: Classify using a dataset drawn from a joint distribution p(x,y): Features $x \in \mathbb{R}^n$ Labels $y \in \mathbb{R}$ • Goal is to predict y given an instance of x: $p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y=1)}{p(\mathbf{x})}$ $= \frac{1}{\frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y)p(y=1)} + 1}$ $= \frac{p(\mathbf{x}|y)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)}$ $= \frac{1}{1 + \exp\left(\log\left(\frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=0)p(y=0)}\right)\right)}$ • Task: Classify using a dataset drawn from a joint distribution p(x,y): Features $x \in \mathbb{R}^n$ Labels $y \in \mathbb{R}$ • Goal is to predict y given an instance of x: $p(y=1|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y=1)}{p(\mathbf{x})}$ $$= \frac{p(\mathbf{x})}{\frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y)p(y=1)} + 1}$$ $$= \frac{p(\mathbf{x}|y)p(y=1)}{p(\mathbf{x}|y=0)p(y=0) + p(\mathbf{x}|y=1)p(y=1)}$$ $$= \frac{1}{1 + \exp\left(\log\left(\frac{p(\mathbf{x}|y=0)p(y=0)}{p(\mathbf{x}|y=1)p(y=1)}\right)\right)}$$ • Task: Classify using a dataset drawn from a joint distribution p(x,y): Features $x \in \mathbb{R}^n$ Labels $y \in \mathbb{R}$ • Goal is to predict y given an instance of x: Log-Likelihood Ratio $$p(y = 1 | \mathbf{x}) = \sigma \left(\log \left(\frac{p(\mathbf{x}|y = 1)}{p(\mathbf{x}|y = 0)} \right) + \log \left(\frac{p(y = 1)}{p(y = 0)} \right) \right)$$ Class Marginal (does not depend on x) • Task: Classify using a dataset drawn from a joint distribution p(x,y): Features $x \in \mathbb{R}^n$ Labels $y \in \mathbb{R}$ • Goal is to predict y given an instance of x: The sigmoid converts the distance from a normal regression problem to a probabilistic decision boundary #### Log-Likelihood Ratio $$p(y = 1 | \mathbf{x}) = \sigma \left(\log \left(\frac{p(\mathbf{x}|y = 1)}{p(\mathbf{x}|y = 0)} \right) + \log \left(\frac{p(y = 1)}{p(y = 0)} \right) \right)$$ Class Marginal (does not depend on x) ### Recap **General recipe** for *most* ML algorithms or learning processes: #### Are we done? • How do we change the **family of functions** that a model learns? Scale capacity? What if we want to predict a discrete value and not a continuous value (classification)? ### DESY Summer Program 2025 | Machine Learning Introduction ### Neural Zoo ### Diversity of Neural Networks - Ever growing number of fundamental building blocks to neural based systems - No universally best block for all uses cases, the various building blocks have different strengths and weaknesses Source: link ### DESY Summer Program 2025 | Machine Learning Introduction ## Neural Zoo Convolutional Neural Networks - Extract relevant features from a high dimensional input domain space given by the pixel space of an image of height and width $\mathbf{H} \times \mathbf{W} \to x \in \mathbb{R}^{H \times W}$ - Salient features \sim e.g. the lines of contrast between the foreground and the background Representation - Extract relevant features from a
high dimensional input domain space given by the pixel space of an image of height and width $\mathbf{H} \times \mathbf{W} \to x \in \mathbb{R}^{H \times W}$ - Salient features \sim e.g. the lines of contrast between the foreground and the background - The key building block is the **kernel filter:** S^{1}_{11} Representation - Extract relevant features from a high dimensional input domain space given by the pixel space of an image of height and width $\mathbf{H} \times \mathbf{W} \to x \in \mathbb{R}^{H \times W}$ - Salient features \sim e.g. the lines of contrast between the foreground and the background - The key building block is the **kernel filter:** Representation - Extract relevant features from a high dimensional input domain space given by the pixel space of an image of height and width $\mathbf{H} \times \mathbf{W} \to x \in \mathbb{R}^{H \times W}$ - Salient features \sim e.g. the lines of contrast between the foreground and the background - The key building block is the **kernel filter:** Representation - Extract relevant features from a high dimensional input domain space given by the pixel space of an image of height and width $\mathbf{H} \times \mathbf{W} \to x \in \mathbb{R}^{H \times W}$ - Salient features \sim e.g. the lines of contrast between the foreground and the background - The key building block is the **kernel filter:** Representation • Formally the kernel convolution operation: $$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$ • Salient feature map 'S' is by default smaller: $$\mathbf{S} \in \mathbb{R}^{(H\text{-}K+2P/S \ +1)\times (W-K \ + \ 2P/S \ + \ 1)}$$ • Compressing image size further to reduce input dimension by max/average pooling $$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$ • Salient feature map 'S' is by default smaller: $$\mathbf{S} \in \mathbb{R}^{(H-K+2P/S + 1) \times (W-K + 2P/S + 1)}$$ • Compressing image size further to reduce input dimension by max/average pooling **Formally** the kernel convolution operation: $$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$ Salient feature map 'S' is by default smaller: $$\mathbf{S} \in \mathbb{R}^{(H-K+2P/S+1)\times(W-K+2P/S+1)}$$ Compressing image size further to reduce input dimension by max/average pooling CNN Layer 1 x6 Kernels CNN Layer 2 x6 Kernels • Formally the kernel convolution operation: $$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$ • Salient feature map 'S' is by default smaller: $$\mathbf{S} \in \mathbb{R}^{(H-K+2P/S+1)\times(W-K+2P/S+1)}$$ • Compressing image size further to reduce input dimension by max/average pooling • The inverse transpose operation expands the image: ### **DESY Summer Program 2025** | Machine Learning Introduction # **Neural Zoo**Transformers ### **Transformers** #### • Before Transformers: #### • Recurrent Neural Networks: Sequential models utilise recurrent connections, in which the output of the network is passed from time step t to t+1 via a recurrent unit – great sequences #### • Convolution Neural Networks: Model that utilises kernel filters to learn 'salient' features by convoluting nearby activity into increasingly abstract features – great for local information extraction in sequences ### **Transformers** #### • Before Transformers: • Recurrent Neural Networks: Sequential models utilise recurrent connections, in which the output of the network is passed from time step t to t+1 via a recurrent unit – great sequences Convolution Neural Networks: Model that utilises kernel filters to learn 'salient' features by convoluting nearby activity into increasingly abstract features – great for local information extraction in sequences #### • Transformers: - Introduced attention mechanisms - Provides information about all positions simultaneously - Great for **sequences**, and geometrical data such as **images** Figure 1: The Transformer - model architecture. ### Context Matters – Global Attention The distribution of pixel values can be generated to reflect a conditional probability: $p(x_i|\mathcal{C} = \text{'Small cute animal with wide eyes'})$ ### Context Matters – Global Attention The distribution of pixel values can be generated to reflect a conditional probability: $p(x_i|\mathcal{C} = \text{'Small cute animal with wide eyes'})$ But what we want is each pixel to be dependent on the context and the rest of the pixel values: $$p(x_i|\mathcal{C} = \text{'Small cute...'}, \sum_{j \neq i}^{H \times W} x_j)$$ ### Transformers – Scaled dot-product attention #### Advantages of Transformers (physics focus): - Handle variable length data - Capture long-range dependencies in data - Permutation/order invariant - Highliy parallelisable #### • Attention Mechanism: - The success of transformers resides at first order in the introduction of the attention mechanism - Understanding attention needs you to understand the idea of: - vector embeddings - attention Multi-Head Attention Figure 1: The Transformer - model architecture. ### Transformers – Vector Embeddings #### Transformers act on vectors: • Tokenisation+embedding turns each element of the Figure 1: The Transformer - model architecture. ### Transformers – Vector Embeddings #### • Transformers act on vectors: • Tokenisation+embedding turns each element of the Figure 1: The Transformer - model architecture. ### Transformers – Attention - Attention = Dynamic flow of information - Each **embedded token** stores which token matters and by how much • Scaled-dot product attention is one type of attention that achieves this goal: $$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$ - Three key ingredients: - Query (Q): What am I looking for? - **Key (K)** : What do I have to offer? - Value (V) : What do I share if picked? Figure 1: The Transformer - model architecture. Lets see how this works for a simple case: - 1) Define scaled-dot product attention weights for optimisation: - $\mathbf{W}_{\mathbf{Q}}$: Matrix of weights for queries, shape = [n, e] - \mathbf{W}_{K} : Matrix of weights for keys, shape = [n, e] - \mathbf{W}_{V} : Matrix of weights for values, shape = [n, e] Lets see how this works for a simple case: - 2) Compute the query, key and value triplet (Q,K,V) for 'plays' - $\mathbf{Q}_{\mathrm{plays}}$: W_{Q} . T_{p} = $[1, \epsilon]$ - $\mathbf{K}_{\mathbf{d}(\mathbf{f})}$: \mathbf{W}_{K} . $\mathbf{T}_{\mathbf{d}(\mathbf{f})}$ = $\mathbf{I}_{\mathbf{f}}$ [1,6] - $\mathbf{V}_{d(f)}$: W_V . $T_{d(f)} = \begin{bmatrix} 1, \epsilon \end{bmatrix}$ $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$ Lets see how this works for a simple case: • 2) Compute the **similarity** between 'dog(fetch)' to ''play' • $$\mathbf{S}_{\mathbf{plays-dog}}$$: $\mathbf{Q}_{\mathbf{plays}}$. $\mathbf{K}_{\mathbf{d}}$ = $\begin{bmatrix} \mathbf{1},\mathbf{1} \end{bmatrix}$ • $$\mathbf{S}_{plays-fetch}$$: \mathbf{Q}_{plays} . \mathbf{K}_{f} = $\begin{bmatrix} \mathbf{I}_{f} & \mathbf{I}_{f} \\ \mathbf{I}_{f} & \mathbf{I}_{f} \end{bmatrix}$ • 3) Convert to Similarity to 'scaled weights': $$\mathbf{a^p_{d(f)}}$$: $\sigma(S_{plays-dog(fetch)}) = \sigma(\square) = \square$ Softmax forces values to be in range [0,1] #### Scaled Dot-Product Attention • Lets see how this works for a simple case: • 4) Form the context of 'plays' relative to 'dog' & 'fetch': • $$\mathbf{C}_{\mathbf{plays\text{-}fetch}}$$: a^p_f . $V_f =$ [1,e] • 5) What is the total context of 'plays'? • $$C_{plays}$$: $C_{plays-dog} + C_{plays-fetch} = + = = [1,e]$ #### Scaled Dot-Product Attention • Lets see how this works for a simple case: • 6) Repeat now for 'dog' and 'fetch': • Lets see how this works for a simple case: • 6) Repeat now for 'dog' and 'fetch': What is the context of all embedding vectors to the word 'play'? $$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$ Lets see how this works for a simple case • 6) Repeat now for 'dog' and 'fetch': What is the context of all embedding vectors to the word 'play'? Figure 1: The Transformer - model architecture. ### DESY Summer Progra 2025 | Machine Learning Introduction # The End Thank you! ### Resources #### • Books: - [1] I.Goodfellow, Y.Bengio, and A.Courville, 'Deep Learning', MIT Press, 2016, http://www.deeplearningbook.org - [2] Simon J.D. Prince, 'Understanding Deep Learning', MIT Press, 2023, http://udlbook.com - [3] Kevin P. Murphy, "Probabilistic Machine Learning: An introduction", MIT Press, 2022, probml.ai #### • Lectures: - [1] ATLAS-D 2023, F.Meloni, https://indico.cern.ch/event/1263122/ - [2] G.Louppe, Info8010 Deep Learning, 2024, https://github.com/glouppe/info8010-deep-learning #### • Misc. : [1] Kaare Petersen, Michael Pedersen, 'Matrix Cookbook', 2012, https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf DESY Summer Progra 2025 | Machine Learning Introduction # Backup #### Point Estimators: Technicality of continuous variables • Covariance: Linear correlation between two variables: $$Cov(f(x), g(y)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])(g(y) - \mathbb{E}[g(y)]) \right]$$ - Deterministically Correlated Random Variables: - \rightarrow Two random variables X & Y, such that y = g(x): $$p_x(x) = p_y(g(x)) \left| \frac{\partial g(x)}{\partial x} \right|$$ \rightarrow In higher dimensions $\mathbf{x} \& \mathbf{y}$, for $\mathbf{x} = g(\mathbf{y})$: $$p_x(\mathbf{x}) = p_y(g(\mathbf{x})) \left| \det \left(\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$ #### Point Estimators: Technicality of continuous variables • Covariance: Linear correlation between two variables: $$Cov(f(x), g(y)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])(g(y) - \mathbb{E}[g(y)]) \right]$$ • Deterministically Correlated Random Variables: \rightarrow Two random variables X & Y, such that y = q(x): $$p_x(x) = p_y(g(x)) \left| \frac{\partial g(x)}{\partial x} \right
$$ \rightarrow In higher dimensions $\mathbf{x} \& \mathbf{y}$, for $\mathbf{x} = g(\mathbf{y})$: $$p_x(\mathbf{x}) = p_y(g(\mathbf{x})) \left| \det \left(\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$ ### **Estimator Properties** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • **Bias** of an estimator is given by: $$bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$ • Variance of an estimator: $$Var(\hat{\theta})$$ • Example – Gaussian: Sample $\{x\}_m$ generated by a Gaussian pdf: $$\hat{\sigma}^2 = \frac{1}{m} \sum \left[(x_i - \hat{\mu})^2 \right] \triangleleft - - p(x_i | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2} \right]$$ \rightarrow Bias calculation: bias $$(\hat{\sigma}^2) = \mathbb{E}(\hat{\sigma^2}) - \sigma^2 = -\frac{\sigma^2}{m}$$ $$\mathbb{E}(\hat{\sigma}^2) = \mathbb{E}\left[\frac{1}{m}\sum_{i}(x_i - \hat{\mu})^2\right]$$ $$= \frac{m-1}{m}\sigma^2$$ ### **Estimator Properties** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • **Bias** of an estimator is given by: $$bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$ • Variance of an estimator: $$Var(\hat{\theta})$$ • Example – Gaussian: Sample $\{x\}_m$ generated by a Gaussian pdf: $$\hat{\sigma}^2 = \frac{1}{m-1} \sum \left[(x_i - \hat{\mu})^2 \right] \triangleleft \qquad p(x_i | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2} \right]$$ \rightarrow Bias calculation: $$\operatorname{bias}(\hat{\sigma}^2) = \mathbb{E}(\hat{\sigma^2}) - \sigma^2 = 0$$ #### **Estimator Properties** • Point Estimator, or statistic, is any function of the data that infers from the data some parameter of interest θ : $$\hat{\theta} = g(\{x\}_m)$$ • **Bias** of an estimator is given by: $$bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$ • Variance of an estimator: $$Var(\hat{\theta})$$ • Example – Gaussian: Sample $\{x\}_m$ generated by a Gaussian pdf: $$\hat{\mu} = \frac{1}{m} \sum_{i=1}^{m} x_{i} \iff p(x_{i}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{1}{2} \frac{(x_{i}-\mu)^{2}}{\sigma^{2}}\right]$$ \rightarrow Variance calculation: $$\operatorname{Var}(\hat{\mu}) = \operatorname{Var}(\frac{1}{m} \sum_{i=1}^{m} x_{i}) = \mathbb{E}\left[\left(\frac{1}{m} (\sum_{i=1}^{m} x_{i} - \mathbb{E}(\sum_{i=1}^{m} x_{i}))\right)^{2}\right]$$ $$= \frac{1}{m^{2}} \sum_{i=1}^{m} \operatorname{Var}(x_{i}) = \frac{\sigma^{2}}{m^{2}}$$ #### Gradient Descent • Optimising the model f is achieved by minimising the loss/cost function: $$\hat{\Phi} = \arg\min\left[\mathcal{L}(f(\mathbf{x}|\Phi), \mathbf{x})\right]$$ • **Gradient descent** has primarily two steps: 1) Calculate gradients: $$\frac{\partial \mathcal{L}}{\partial \Phi} = \begin{bmatrix} \frac{\partial \phi_0}{\partial \phi_0} \\ \dots \\ \frac{\partial \mathcal{L}}{\partial \phi_0} \end{bmatrix}$$ 2) Update the parameters in direction that minimises loss: $$\phi_i \leftarrow \phi_i - \alpha \frac{\partial \mathcal{L}}{\partial \phi}$$ ### High Energy Physics – ML Developments → Checkout the HEP Machine Learning Living Review #### DESY Summer Program 2025 | Machine Learning Introduction # Probability Triplet Can likely skip • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p : \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_{A} p(x)dx$$ • Marginal probability density: $$p(x) = \int p(x, y) dy$$ Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p: \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_{A} p(x)dx$$ Marginal probability density: $$p(x) = \int p(x, y) dy$$ Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: **Realisation:** An instance sampled from the random variable distribution: $$x \sim X$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p: \mathbb{R} \to [0, \infty]$: Marginal probability density: $$p(x) = \int p(x, y) dy$$ • Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: **Realisation:** An instance sampled from the random variable distribution: $$x \sim X$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p: \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_A p(x)dx$$ • Marginal probability density: $$p(x) = \int p(x, y) dy$$ • Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: **Realisation:** An instance sampled from the random variable distribution: $$x \sim X$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p: \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_A p(x)dx$$ • Marginal probability density: $$p(x) = \int p(x, y) dy$$ Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: • Realisation: An instance sampled from the random variable distribution: $$x \sim X$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p : \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_A p(x)dx$$ • Marginal probability density: $$p(x) = \int p(x, y) dy$$ • Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: • Realisation: An instance sampled from the random variable distribution: $x \sim X$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p: \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_{A} p(x)dx$$ Marginal probability density: $$p(x) = \int p(x, y) dy$$ Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)}$$ • Random Variable: Measurable function X: $\Omega \to E$ from sample to measurable space: • Realisation: An instance sampled from the random variable distribution: $$x \sim X$$ • Absolute continuous probability is the infinitesimal sum^[1] over the probability density function $p : \mathbb{R} \to [0, \infty]$: $$P(X \in A) = \int_{A} p(x)dx$$ • Marginal probability density: $$p(x) = \int p(x, y) dy$$ Conditional probability density: $$p(y|x) = \frac{p(x,y)}{p(x)} \quad \blacktriangleleft$$ • (Non-)Conditional Independence: Two random variables are independent if: $p(\mathbf{x}=x,\mathbf{y}=y)=p(\mathbf{x}=x)p(\mathbf{y}=y)$ $\forall x \in \mathbf{x}, \ \forall y \in \mathbf{y}$ #### Point Estimators: Expectation, bias, variance • Expectation: Expected value of a function of random variables $\mathbb{E}_{x \sim p} \left[f(x) \right] = \int p(x) f(x) dx$ • Variance: Variation of samples from a random variable: $$Var(f(x)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2 \right]$$ • Covariance: Linear correlation between two variables: $$Cov(f(x), g(y)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])(g(y) - \mathbb{E}[g(y)]) \right]$$