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x1

Portrait of Edmond de Belamy

2018:  $432,000 painting sold at 
           Christie’s using a GAN 
           method via Obvious

2023:   Tricking the world is not hard with 
            such technology!

2022:  Colarado state fair winner using 
           DALL · E2. 

           Sparks the question of morality in 
           the age of AI realism

DESY | Machine Learning Intro.

https://www.theguardian.com/commentisfree/2023/mar/27/pope-coat-ai-image-baby-boomers
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Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

Artificial Intelligence:
Engineering behind intelligent machines 
and programs

Machine Learning:
Ability to learn without being explicitly 
programmed

Deep Learning:
Learning based on deep neural networks 

DESY | Machine Learning Intro.



6‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
What is Machine Learning?
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7‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
 ‘A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P , if its 
performance at tasks in T , as measured by P , improves with 
experience E.’ - Mitchell  1997
 

Paper: link

[Mitchell 1997]: ISBN 0070428077

What is Machine Learning?
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8‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
 ‘A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P , if its 
performance at tasks in T , as measured by P , improves with 
experience E.’ - Mitchell  1997

 
 Experience (E): The stimulus that drives learning, is the set of examples 

x, or a dataset  𝓓 of many examples x = {x}N :

Supervised: The dataset examples have an associated label or target y = {y}N

Paper: link

[Mitchell 1997]: ISBN 0070428077

What is Machine Learning?
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9‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
 ‘A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P , if its 
performance at tasks in T , as measured by P , improves with 
experience E.’ - Mitchell  1997

 
 Experience (E): The stimulus that drives learning, is the set of examples 

x, or a dataset  𝓓 of many examples x = {x}N :

Supervised: The dataset examples have an associated label or target y = {y}N

Unsupervised: The dataset examples have no labels or targets

Paper: link

[Mitchell 1997]: ISBN 0070428077

What is Machine Learning?

ATLAS-D | Machine Learning Tutorial
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10‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
 ‘A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P , if its 
performance at tasks in T , as measured by P , improves with 
experience E.’ - Mitchell  1997
 

 Task (T): Given an example x ∈ ℝn the model f should learn a prediction y 
= f(x). E.g.

Classification: Assign the example to a category  f : ℝn → {1,…,k} 

Regression:    Predict the value of a target  f : ℝn → ℝ

Paper: link

[Mitchell 1997]: ISBN 0070428077

What is Machine Learning?
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11‘Giving computers the ability to learn 
without explicitly programming them’

- Arthur Samuel, 1959
 ‘A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P , if its 
performance at tasks in T , as measured by P , improves with 
experience E.’ - Mitchell  1997
 

 Performance (P): Evaluate the performance of the model f

Measure Theory:   Generalisation of geometric distances for a measureable 
space (Ω,F), such that for a measure  : 𝕄 F → [0, +∞]

What is Machine Learning?

[Mitchell 1997]: ISBN 0070428077

Paper: link

ATLAS-D | Machine Learning Tutorial

x1

N
um

. E
nt

rie
s 𝕄

11

DESY | Machine Learning Intro.

https://ieeexplore.ieee.org/abstract/document/5389202


12Basic Terminology - Day-to-day

 Datasets: The data from which the algorithm will need 
to learn from:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY }N 

ATLAS-D | Machine Learning Tutorial
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13Basic Terminology - Day-to-day

 Datasets: The data from which the algorithm will need 
to learn from:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY }N 

 Features: Each dimension of the example x, or input 
space ℝX, which represents some feature such as pixel 
color, particle energy, etc…:

x  ∈ ℝX 

ℝ2 

ATLAS-D | Machine Learning Tutorial
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14Basic Terminology - Day-to-day

 Datasets: The data from which the algorithm will need 
to learn from:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY }N 

 Features: Each dimension of the example x, or input 
space ℝX, which represents some feature such as pixel 
color, particle energy, etc…:

x  ∈ ℝX 

 Algorithms: The process in which the model f defined 
by a parameter set Φ is optimised according to some 
objective function: 

Φ* =  arg min [ f ]
Φ

ATLAS-D | Machine Learning Tutorial
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Is ML useful?
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 The boom in ML/AI has been primarily 
the result of:

Datasets: The vast amount of data from 
images curated by ImageNet to 
Protein Data Bank (PDB) 
Processing Power: The computational power 
of CPU/GPUs and now emerging accelerator 
platforms such as TPUs etc…

 At a secondary level it is also the result of:
Open-source Libraries: PyTorch (Meta), 
Tensorflow + JAX (Google), etc…
High—Level Interpretable Languages:  
Julia, Python, etc...

https://image-net.org/
https://www.rcsb.org/


17AI/ML Summer
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 Bio-molecular research:
AlphaFold1.0 → 3.0 has lead to substantial 
advancements in predicting protein structures:



18High Energy Physics – ML Developments
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→ Checkout the HEP Machine Learning Living Review

18
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https://iml-wg.github.io/HEPML-LivingReview/
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→ Checkout the HEP Machine Learning Living Review

19

SPANet Transformer - arXiv:2106.03898
Transformer model using scaled dot-product equivariant 

properties for top-jet reconstruction

tt

ttH
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https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/pdf/2106.03898


20High Energy Physics – ML Developments
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→ Checkout the HEP Machine Learning Living Review

Typical signal classification in data 
analyses, e.g. Higgs discovery:

Source: A. Radovic et al., Nature 560(2018) no. 7716,41

20
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https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature/1684748
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→ Checkout the HEP Machine Learning Living Review

Background Estimation by 
smoothing data-driven 

backgrounds using gaussian 
processes for H→ɣɣ
Source: CDS-2791079

21
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https://iml-wg.github.io/HEPML-LivingReview/
https://cds.cern.ch/record/2791079


22High Energy Physics – ML Developments
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→ Checkout the HEP Machine Learning Living Review

New likelihood inferencing 
paradigm: 

H→ZZ off-shell analysis using 
unbinned likelihood ratios from 

neural networks

Source: ATL-COM-PHYS-2024-24

22
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https://iml-wg.github.io/HEPML-LivingReview/
https://cds.cern.ch/record/2896802/files/ATL-COM-PHYS-2024-240.pdf
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24Machine Learning versus Algorithm Development
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● Four key parts to the ‘Machine Learning’ process:

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

25
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● Four key parts to the ‘Machine Learning’ process:

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

Model f:
E.g. Neural network with 

parameters Φ

DESY | Machine Learning Intro.
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● Four key parts to the ‘Machine Learning’ process:

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

Model f:
E.g. Neural network with 

parameters Φ Loss/Cost Function 
(ℒ f,x):

Function for calculating
agreement between prediction 

of model and implicit 
data distribution

ℒ(
f,x

)

27
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● Four key parts to the ‘Machine Learning’ process:

Model f:
E.g. Neural network with 

parameters Φ Loss/Cost Function 
(ℒ f,x):

Function for calculating
agreement between prediction 

of model and implicit 
data distribution

Optimise 
parameters Φ:

Optimisation algorithm

ℒ(
f,x

)

d (ℒ f,x)/dΦ

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

28
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Brief Statistics Review

29
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30Frequentist Statistics
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 Probability is attributed only to the data x, meaning 
probability of outcomes is obtained by repeatable 
experiments:

 Conditional probability, the probability of an outcome 
(x=x) conditioned on the occurance of another random 
process (y=y):

 Important to note that frequentist statistics assumes that 
the data is drawn from p(x=x | θ), with a set of parameters 
that characterise the underlying true distribution θ. 

30
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 Probability is attributed only to the data x, meaning 
probability of outcomes is obtained by repeatable 
experiments:

 Conditional probability, the probability of an outcome 
(x=x) conditioned on the occurance of another random 
process (y=y):

 Important to note that frequentist statistics assumes that 
the data is drawn from p(x=x | θ), with a set of parameters 
that characterise the underlying true distribution θ. 

There is only one true value 
of θtrue. The goal is to 

estimate it ~ θest.

31

DESY | Machine Learning Intro.
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Normalise over all possible 
hypotheses ~ marginal 

probability

 Probability is a degree of belief meaning that the 
observed data x, is not necessarily defined by repeatability:

32

DESY | Machine Learning Intro.
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 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

33
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 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

34

DESY | Machine Learning Intro.

Recall on slide 14 of this lecture that 
from a mathematical perspective a ML 
model is the set of optimal parameter 
that match data and predictions!
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 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Is there a recipe for extracting from the 
data the optimal parameters or best 
estimator?

35
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 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Is there a recipe for extracting from the 
data the optimal parameters or best 
estimator?

→ Maximum Likelihood Method: 
General approach to estimating the point estimator

36

DESY | Machine Learning Intro.

Log-likelihood is preferred 
for numerical stability:
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Maximum Likelihood Method: 
In a counting experiment, model data as Gaussian 

distributed:

37

DESY | Machine Learning Intro.

Model

p(x | μ, σ)

x
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Maximum Likelihood Method: 
In a counting experiment, model data as Gaussian 

distributed:

Fill in the maximum likelihood formula:

38

DESY | Machine Learning Intro.

Model

p(x | μ, σ)

x
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Maximum Likelihood Method: 
In a counting experiment, model data as Gaussian 

distributed:

Fill in the maximum likelihood formula:

39

DESY | Machine Learning Intro.

Model

p(x | μ, σ)

x

We have some data {x}m which forms an 
empirical distribution (more on this later), 

lets maximise the likelihood:

Data
p(x)

x
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Maximum Likelihood Method: 
In a counting experiment, model data as Gaussian 

distributed:

Fill in the maximum likelihood formula:

40

DESY | Machine Learning Intro.

We have some data {x}m which forms an 
empirical distribution (more on this later), 

lets maximise the likelihood:

Data
p(x)

x

With a bit of algebra we have 
derived the sample mean
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

Key Points:
I)  Data with low probability has high 
    information content
II) Independent data samples are
     additive:   I(x1 ⊕ x2)  = I(x1) + I(x2)

41

p(x)

x

ModelData

q(x | θ)

x

DESY | Machine Learning Intro.
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x)Q(x)

DESY | Machine Learning Intro.
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x)Q(x)
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x)Q(x)
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x)Q(x)
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x)
Q(x)

DESY | Machine Learning Intro.
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

DKL

P(x) Q(x)

DESY | Machine Learning Intro.
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

48

DKL

P(x) Q(x)
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● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

49

DKL

P(x) Q(x)

DESY | Machine Learning Intro.



50Information Theory

ATLAS-D | Machine Learning Tutorial

50

● Self-Information:

● Uncertainty in an entire distribution P(x) – 
Shannon Entropy:

● Relative Entropy between two distributions P(x) 
and Q(x):

50

DKL

P(x) Q(x)

DESY | Machine Learning Intro.



51Maximum Likelihood Estimator

ATLAS-D | Machine Learning Tutorial

51

 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

51
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

p(x)

x

ModelData

q(x | θ)

x

52

DESY | Machine Learning Intro.



53Maximum Likelihood Estimator

ATLAS-D | Machine Learning Tutorial

53

 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

p(x)

x

ModelData

1

q(x | θ)

x

53
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

p(x)

x

q(x | θ)

ModelData

1

2

x

54
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

 p(x)

x

q(x | θ)

ModelData

1

2

x

55
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

 p(x)

x

q(x | θ)

ModelData

1

3

x

56
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

 p(x)

x

q(x | θ)

ModelData

4

x

57
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 Intuitive understanding of the maximum 
likelihood comes from the idea of distance 
between two distribution

 Kullback-Leibler Divergence is equivalent 
to maximum likelihood – lets see how this 
works:

 p(x)

x

q(x | θ)

ModelData

4

x

5

58
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Learning Process & Estimators
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● Four key parts to the ‘Machine Learning’ process:

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

Model f:
E.g. Neural network with 

parameters Φ Loss/Cost Function 
(ℒ f,x):

Function for calculating
agreement between prediction 

of model and implicit 
data distribution

Optimise 
parameters Φ:

Optimisation algorithm

ℒ(
f,x

)

d (ℒ f,x)/dΦ

60
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Supervised vs Unsupervised

● Supervised learning:
Examples x = {x}m paired with targets y = {y}m 
that instruct the algorithm on what to learn

● Unsupervised learning:
Examples x = {x}m with no targets

61Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

DESY | Machine Learning Intro.
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Supervised vs Unsupervised

● Supervised learning:
Examples x = {x}m paired with targets y = {y}m 
that instruct the algorithm on what to learn

● Unsupervised learning:
Examples x = {x}m with no targets

Conditional Density 
Estimation

Density Estimation

62Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 
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Supervised vs Unsupervised

● Supervised learning:
Examples x = {x}m paired with targets y = {y}m 
that instruct the algorithm on what to learn

● Unsupervised learning:
Examples x = {x}m with no targets

Conditional Density 
Estimation

Density Estimation

Decomposing the problem into m-1 conditional density 
estimation problems ~ supervised learning problems

63Dataset:
Supervised:

= { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
= { {xi }  ∈ ℝX }N 

DESY | Machine Learning Intro.
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Supervised vs Unsupervised

● Supervised learning:
Examples x = {x}m paired with targets y = {y}m 
that instruct the algorithm on what to learn

● Unsupervised learning:
Examples x = {x}m with no targets

Conditional Density 
Estimation

Density Estimation
Learning the joint distribution p(x,y) via unsupervised 

learning techniques, then infer.

64Dataset:
Supervised:

= { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
= { {xi }  ∈ ℝX }N 

DESY | Machine Learning Intro.
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Supervised vs Unsupervised

● Supervised learning:
Examples x = {x}m paired with targets y = {y}m 
that instruct the algorithm on what to learn

● Unsupervised learning:
Examples x = {x}m with no targets

Dataset:
Supervised:

 𝓓 = { {xi , yi}  ∈ ℝX × ℝY
 }N 

Unsupervised:
 𝓓 = { {xi }  ∈ ℝX }N 

Linear Regression Example

y = ax + ei

65
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Model f:
E.g. Neural network with 

parameters Φ

● Parametric linear model:

● Configurable parameters of model Φ = w

w1, …, wn

x1,
.
.

xn

y = 

Linear Regression Example

y = ax + ei

66
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● Parametric linear model:

● Configurable parameters of model Φ = w

● Loss: Mean squared error

w1, …, wn

x1,
.
.

xn

y = 

Linear Regression Example

y = ax + ei

67Loss/Cost Function 
(ℒ f,x):

Function for calculating
agreement between prediction 

of model and implicit 
data distribution
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● Parametric linear model:

● Configurable parameters of model Φ = w

● Loss: Mean squared error

Loss/Cost Function 
(ℒ f,x):

Function for calculating
agreement between prediction 

of model and implicit 
data distribution

w1, …, wn

x1,
.
.

xn

y = 

Linear Regression Example

y = ax + ei

Why the mean 
squared error?

68
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● I said there was a general likelihood approach to 
estimating/learning parameters:

● General MLE estimate also applies to 
conditional probability:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach 69Optimise 
parameters Φ:
Optimisation algorithm
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● Probabilistic view of regression:
Data generated with an error term that is gaussian
distributed, meaning repeated experiments have some 
noise:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach 70Optimise 
parameters Φ:
Optimisation algorithm
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● Probabilistic view of regression:
Data generated with an error term that is gaussian
distributed, meaning repeated experiments have some 
noise:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach

2.0

-2.0

2.0 2.0

-2.0

yy

71Optimise 
parameters Φ:
Optimisation algorithm
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Probabilistic view of regression:
Data generated with an error term that is gaussian
distributed, meaning repeated experiments have some 
noise:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach

2.0

-2.0

2.0 2.0

-2.0

yy

72
Optimise 

parameters Φ:
Optimisation algorithm
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● Generalise MLE estimate the conditional 
probability:

● Probabilistic view of regression:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach

2.0

-2.0

2.0 2.0

-2.0

yy

73Optimise 
parameters Φ:
Optimisation algorithm
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● Generalise MLE estimate the conditional 
probability:

● Probabilistic view of regression:

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

Maximum Likelihood Approach

2.0

-2.0

2.0 2.0

-2.0

yy

74Optimise 
parameters Φ:
Optimisation algorithm
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● Generalise MLE estimate the conditional 
probability:

● Probabilistic view of regression:

● Maximising the log-likelihood is equivalent to 
Mean Squared Error minimisation

Maximum Likelihood Approach

ATLAS-D | Machine Learning Tutorial

Linear Regression Example

2.0

-2.0

2.0 2.0

-2.0

yy

75Optimise 
parameters Φ:
Optimisation algorithm
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● First Order Gradient Descent:

Optimise 
parameters Φ:
Optimisation algorithm

Linear Regression Example

76

DESY | Machine Learning Intro.



77Capacity & Bias-Variance Trade-Off

ATLAS-D | Machine Learning Tutorial

● Capacity of a model ~ the number of degrees 
of freedom that can be tuned

1st Order Polynomial:

2nd Order Polynomial:
.
.
9th Order Polynomial:

77

DESY | Machine Learning Intro.



78Capacity & Bias-Variance Trade-Off

ATLAS-D | Machine Learning Tutorial

● Capacity of a model ~ the number of degrees 
of freedom that can be tuned

1st Order Polynomial:

2nd Order Polynomial:
.
.
9th Order Polynomial:

● Under/Over-fitting avoided by matching 
capacity of model to complexity of the 
problem

78
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79

 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Bias of an estimator is given by:

 Variance of an estimator:

79
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80

 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Bias of an estimator is given by:

 Variance of an estimator:

θ

‘true’ biased

High 
variance

80
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● Bias-Variance trade-off:

81
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Learning Recipe
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General recipe for most ML 
algorithms or learning processes:

83
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General recipe for most ML 
algorithms or learning processes:

Dataset

Model f

Optimisation
Algorithm

Loss/Cost 
Function

Experience

84
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General recipe for most ML 
algorithms or learning processes:

Task

85
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General recipe for most ML 
algorithms or learning processes:

Performance

86
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General recipe for most ML 
algorithms or learning processes:

87
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General recipe for most ML 
algorithms or learning processes: Are we done?

88
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General recipe for most ML 
algorithms or learning processes: Are we done?

● How do we change the family of functions 
that a model learns? Scale capacity?

89
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Neural Networks
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● Building block of neural networks:

91
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● Building block of neural networks:

Where, a(k)
i is the activation value, and the 

Φ={w(k)i,b(k)} are the configurable weights & biases

● Neural Network layer is the combination of 
many neurons densely connected (mostly…):

92
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● A total network is therefore:

● ϕ is the activation function, which can take 
many forms

● Optimisation is done via typically gradient 
based descent algorithms

.

.

.

.

.

.

93

DESY | Machine Learning Intro.



94Stochastic Gradient Descent

ATLAS-D | Machine Learning Tutorial

● Stochastic Gradient Descent is an 
adaptation of gradient descent:
 1) Calculate gradients:

 2) Update the parameters in 
     direction that minimises loss:

● Batch based training with iterative updates 
to the gradients based on an epoch ‘t’, but 
the key goal is to learn:
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xj . . . . . . .

● Chain rule used to decompose 
the differential behaviour of the 
loss  per-layer (intermediate) ℒ
variables in reverse order:

101
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● Chain rule used to decompose 
the differential behaviour of the 
loss  per-layer (intermediate) ℒ
variables in reverse order:

xj . . . . . . .

102
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● Chain rule used to decompose 
the differential behaviour of the 
loss  per-layer (intermediate) ℒ
variables in reverse order:

xj . . . . . . .
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● Chain rule used to decompose 
the differential behaviour of the 
loss  per-layer (intermediate) ℒ
variables in reverse order:

xj . . . . . . .
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● Chain rule used to decompose 
the differential behaviour of the 
loss  per-layer (intermediate) ℒ
variables in reverse order:

xj . . . . . . .

105
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● Chain rule again used to decompose 
the differential behaviour of the loss  ℒ
per-parameter Φ = {W, β}:

xj . . . . . . .

106
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General recipe for most ML 
algorithms or learning processes: Are we done?

● How do we change the family of functions 
that a model learns? Scale capacity?

● What if we want to predict a discrete value and 
not a continuous value (classification)?

107

DESY | Machine Learning Intro.
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● Choice of ϕ activation functions is pathological

● Decisions based on an array of factors

● The most common is the concept of vanishing 
gradients:

 ≤ 1/4  ≤ 1/4 ≤ 1  ≤ 1

Sigmoid ReLU Sigmoid ReLU

108
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 Task: Classify using a dataset drawn from a joint distribution 
p(x,y):
          Features x ∈ ℝn 

            Labels y ∈ ℝ

 Goal is to predict y given an instance of x:

109
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 Task: Classify using a dataset drawn from a joint distribution 
p(x,y):
          Features x ∈ ℝn 

            Labels y ∈ ℝ

 Goal is to predict y given an instance of x:

110
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 Task: Classify using a dataset drawn from a joint distribution 
p(x,y):
          Features x ∈ ℝn 

            Labels y ∈ ℝ

 Goal is to predict y given an instance of x:

111
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 Task: Classify using a dataset drawn from a joint distribution 
p(x,y):
          Features x ∈ ℝn 

            Labels y ∈ ℝ

 Goal is to predict y given an instance of x:

Log-Likelihood Ratio

Class Marginal
(does not depend on x)

112
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 Task: Classify using a dataset drawn from a joint distribution 
p(x,y):
          Features x ∈ ℝn 

            Labels y ∈ ℝ

 Goal is to predict y given an instance of x:

Log-Likelihood Ratio

Class Marginal
(does not depend on x)

The sigmoid converts the 
distance from a normal 
regression problem to a 
probabilistic decision 

boundary

113
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General recipe for most ML 
algorithms or learning processes: Are we done?

● How do we change the family of functions 
that a model learns? Scale capacity?

● What if we want to predict a discrete value and 
not a continuous value (classification)?

Linear Regression Example

114

DESY | Machine Learning Intro.
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Source: link

● Ever growing number of fundamental building 
blocks to neural based systems

● No universally best block for all uses cases, 
the various building blocks have different 
strengths and weaknesses

116
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Convolutional Neural Networks
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● Extract relevant features from a high 
dimensional input domain space given by the 
pixel space of an image of height and width 
H × W → x ∊ℝH×W

● Salient features ~ e.g. the lines of contrast 
between the foreground and the background

118
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● Extract relevant features from a high 
dimensional input domain space given by the 
pixel space of an image of height and width 
H × W → x ∊ℝH×W

● Salient features ~ e.g. the lines of contrast 
between the foreground and the background

● The key building block is the kernel filter:

I11 I12 I13

I21 I22 I23

I31 I32

w11 w21

w3
1 w4

1
S111

ⓞ
Image

Kernel ‘filter’ K
S111 = w11I11 + w21I12 

              + w31I21 +w41I22

119
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● Extract relevant features from a high 
dimensional input domain space given by the 
pixel space of an image of height and width 
H × W → x ∊ℝH×W

● Salient features ~ e.g. the lines of contrast 
between the foreground and the background

● The key building block is the kernel filter:

I11 I12 I13

I21 I22 I23

I31 I32

w11 w21

w3
1 w4

1
S111

ⓞ
Image S112

120
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● Extract relevant features from a high 
dimensional input domain space given by the 
pixel space of an image of height and width 
H × W → x ∊ℝH×W

● Salient features ~ e.g. the lines of contrast 
between the foreground and the background

● The key building block is the kernel filter:

I11 I12 I13

I21 I22 I23

I31 I32
w1

1 w2
1

w3
1 w4

1

S111

ⓞ
Image S112

S121

121
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● Extract relevant features from a high 
dimensional input domain space given by the 
pixel space of an image of height and width 
H × W → x ∊ℝH×W

● Salient features ~ e.g. the lines of contrast 
between the foreground and the background

● The key building block is the kernel filter:

I11 I12 I13

I21 I22 I23

I31 I32
w1

1 w2
1

w3
1 w4

1
ⓞ

Image
S122

S111 S112

S121

122
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● Formally the kernel convolution operation:

● Salient feature map ‘S’ is by default smaller:
S ∊ℝ(H-K+2P/S +1)×(W—K + 2P/S + 1)

● Compressing image size further to reduce input 
dimension by max/average pooling

123
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● Formally the kernel convolution operation:

● Salient feature map ‘S’ is by default smaller:
S ∊ℝ(H-K+2P/S +1)×(W—K + 2P/S + 1)

● Compressing image size further to reduce input 
dimension by max/average pooling
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● Formally the kernel convolution operation:

● Salient feature map ‘S’ is by default smaller:
S ∊ℝ(H-K+2P/S +1)×(W—K + 2P/S + 1)

● Compressing image size further to reduce input 
dimension by max/average pooling

CNN Layer 1
x6 Kernels

CNN Layer 2
x6 Kernels

125

DESY | Machine Learning Intro.



126Convolutional Neural Network

ATLAS-D | Machine Learning Tutorial

● Formally the kernel convolution operation:

● Salient feature map ‘S’ is by default smaller:
S ∊ℝ(H-K+2P/S +1)×(W—K + 2P/S + 1)

● Compressing image size further to reduce input 
dimension by max/average pooling

● The inverse transpose operation 
expands the image:

126

DESY | Machine Learning Intro.



127

Neural Zoo
Transformers
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● Before Transformers:  
● Recurrent Neural Networks:   

Sequential models utilise recurrent connections, in which the 
output of the network is passed from time step t to t+1 via 
a recurrent unit – great sequences

● Convolution Neural Networks:
Model that utilises kernel filters to learn ‘salient’ features 
by convoluting nearby activity into increasingly abstract 
features – great for local information extraction in 
sequences 

128
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● Before Transformers:  
● Recurrent Neural Networks:   

Sequential models utilise recurrent connections, in which the 
output of the network is passed from time step t to t+1 via 
a recurrent unit – great sequences

● Convolution Neural Networks:
Model that utilises kernel filters to learn ‘salient’ features 
by convoluting nearby activity into increasingly abstract 
features – great for local information extraction in 
sequences 

● Transformers: 
● Introduced attention mechanisms
● Provides information about all positions 

simultaneously
● Great for sequences, and geometrical data such as  

images

129
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Source: arXiv:1706.03762

https://arxiv.org/pdf/1706.03762v1
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The distribution of pixel values 
can be generated to reflect a 

conditional probability:
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The distribution of pixel values 
can be generated to reflect a 

conditional probability:

But what we want is each pixel 
to be dependent on the context 
and the rest of the pixel values:



132Transformers – Scaled dot-product attention
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● Advantages of Transformers (physics focus):
● Handle variable length data
● Capture long-range dependencies in data
● Permutation/order invariant
● Highliy parallelisable

● Attention Mechanism:
● The success of transformers resides at 

first order in the introduction 
of the attention mechanism

● Understanding attention needs you to 
understand the idea of:
● vector embeddings 
● attention

132
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● Transformers act on vectors:
● Tokenisation+embedding turns each element of the 

sequence into a vector that resides in a vector space:

133
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● Transformers act on vectors:
● Tokenisation+embedding turns each element of the 

sequence into a vector that resides in a vector space:

134
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cat plays fetchxi = 

‘plays’

Ε1

Ε3

Ε2

+.0.36  +0.63   -0.23  

+.0.21  +0.47   +0.18  

+.0.25  +0.92   -0.47  

T

Embedding

‘dog’
‘fetch’

‘cat’

 ∈ℝe
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● Attention = Dynamic flow of information
● Each embedded token stores which token matters and by how 

much

● Scaled-dot product attention is one type of attention that 
achieves this goal:

● Three key ingredients:
● Query (Q) :  What am I looking for?   
● Key (K)    :  What do I have to offer?
● Value (V)  :  What do I share if picked?

135
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● Lets see how this works for a simple case:

● 1) Define scaled-dot product attention weights for 
optimisation:
● WQ :   Matrix of weights for queries,    shape  = [n, e]

● WK :   Matrix of weights for keys,       shape  =  [n, e]

● WV :  Matrix of weights for values,     shape  = [n, e]  

136
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● Lets see how this works for a simple case:

● 2) Compute the query, key and value triplet (Q,K,V) for 
‘plays’
● Qplays :   WQ . Tp   =                         =

● Kd(f) :   WK . Td(f)  =                         = 

● Vd(f) :   WV . Td(f) =                         =

137
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● Lets see how this works for a simple case:

● 2) Compute the similarity between ‘dog(fetch)’ to ‘’play’

● Splays-dog :   Qplays . Kd   =                    =

● Splays-fetch :   Qplays . Kf  =                    = 

● 3) Convert to Similarity to ‘scaled weights’:

● ap
d(f) :      σ( Splays-dog(fetch) )  = σ(      )  =

138
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Softmax forces values 
to be in range [0,1]
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● Lets see how this works for a simple case:

● 4) Form the context of ‘plays’ relative to ‘dog’ & ‘fetch’:

● Cplays-dog :   apd . Vd   =                    =

● Cplays-fetch :   apf . Vf  =                    = 

● 5)  What is the total context of ‘plays’?

● Cplays :     Cplays-dog  + Cplays-fetch  =               =   

139
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● Lets see how this works for a simple case:

● 6) Repeat now for ‘dog’ and ‘fetch’:

C = 

140
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● Lets see how this works for a simple case:

● 6) Repeat now for ‘dog’ and ‘fetch’:

C = 

141
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● Lets see how this works for a simple case:

● 6) Repeat now for ‘dog’ and ‘fetch’:

C = 

142
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Cp

CfCd

What is the context of all 
embedding vectors to the 

word ‘play’?

The rest of the 
transformer is actually 

quite simple 
– just MLPs and 

adding/normalisation
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The End
Thank you!
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ATLAS-D | Machine Learning Tutorial

● Books:
[1] I.Goodfellow, Y.Bengio, and A.Courville, ‘Deep Learning’, MIT Press, 2016, 
http://www.deeplearningbook.org
[2] Simon J.D. Prince, ‘Understanding Deep Learning’, MIT Press, 2023, 
http://udlbook.com 
[3] Kevin P. Murphy, "Probabilistic Machine Learning: An introduction", MIT Press, 2022, 
probml.ai 

● Lectures:
[1] ATLAS-D 2023, F.Meloni, https://indico.cern.ch/event/1263122/ 
[2] G.Louppe, Info8010 Deep Learning, 2024, 
https://github.com/glouppe/info8010-deep-learning

● Misc. :
[1] Kaare Petersen, Michael Pedersen, ‘Matrix Cookbook’, 2012, 
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf 
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Backup

145
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● Covariance:   Linear correlation between two variables:

● Deterministically Correlated Random Variables:

Point Estimators: Technicality of continuous variables

DESY | Machine Learning Intro.

→ Two random variables X & Y, such that y = g(x):

→ In higher dimensions x & y, for x = g(y):

DESY | Machine Learning Intro.
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● Covariance:   Linear correlation between two variables:

● Deterministically Correlated Random Variables:

Point Estimators: Technicality of continuous variables

ATLAS-D | Machine Learning Tutorial

→ Two random variables X & Y, such that y = g(x):

→ In higher dimensions x & y, for x = g(y):

x

y

10

1

px(x)

py(y)

1 3

0.5
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 Example – Gaussian:  
Sample {x}m generated by a Gaussian pdf:

→ Bias calculation:

 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Bias of an estimator is given by:

 Variance of an estimator:

DESY | Machine Learning Intro.
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 Example – Gaussian:  
Sample {x}m generated by a Gaussian pdf:

→ Bias calculation:

 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Bias of an estimator is given by:

 Variance of an estimator:

DESY | Machine Learning Intro.DESY | Machine Learning Intro.



150Estimator Properties 150

 Example – Gaussian:  
Sample {x}m generated by a Gaussian pdf:

→ Variance calculation:

 Point Estimator, or statistic, is any 
function of the data that infers from the 
data some parameter of interest θ:

 Bias of an estimator is given by:

 Variance of an estimator:

DESY | Machine Learning Intro.



151Gradient Descent
● Optimising the model f is achieved by 

minimising the loss/cost function:

● Gradient descent has primarily two 
steps:
 1) Calculate gradients:

 2) Update the parameters in 
     direction that minimises 
     loss:

151
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Reinforcement
Learning

Supervised
Learning

Regression

Unsupervised
Learning

Clustering

Dimensionality
Reduction

Jet
grooming

Event
Reco.

Signal
Extraction

Object
Identification

Density
Estimation

Importance
Sampling

Pile-up
Mitigation

Calibration

Function
Approx.

Parameter
Estimation

Likelihood
Estimation

Accelerator
Operation

Model
Building

Intelligent
Detectors

Real Time
decision

Pattern 
Recognition

Anomaly
Detection

Simulation

Summary 
Statistics

Compression

Data Vis.

Machine
Learning

Classification

Uncertainty 
Estimation
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153High Energy Physics – ML Developments
→ Checkout the HEP Machine Learning Living Review

153

Particle Transformer - arXiv:2202.03772
Transformer model for tagging jets at the LHC

DESY | Machine Learning Intro.

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2202.03772
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Probability Triplet
Can likely skip

154
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

155
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

...

.. . 2 3

3

7 12

7

4

4

4

. . . . . . .
.......

.............
.

. . . . . . . . .

.

 EΩ
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

...

.. . 2 3

3

7 12

7

4

4

4

. . . . . . .
.......

.............
.

. . . . . . . . .

.

 EΩ
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

...

.. . 2 3

3

7 12

7

4

4

4

. . . . . . .
.......

.............
.

. . . . . . . . .

.

 EΩ
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

...

.. .

 EΩ

number

...
2

3
4

5
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

 EΩ

number

2

3
4

5
6

7
8

9
10

11
12
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 Random Variable: Measurable function X 
: Ω → E from sample to measurable space:

 Realisation: An instance sampled from the 
random variable distribution:

 EΩ

number

P(X)
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 Absolute continuous probability is the infinitesimal 
sum[1] over the probability density function p :  → [0, ℝ
∞]:

 Marginal probability density:

 Conditional probability density:

[1] kind of...see uncountable sets 

 (Non-)Conditional Independence:
Two random variables are independent if:

162
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● Expectation:  Expected value of a function of random 
variables

● Variance:  Variation of samples from a random variable:

● Covariance:   Linear correlation between two variables:

Point Estimators: Expectation, bias, variance

ATLAS-D | Machine Learning Tutorial
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