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Vertex & Tracking Detectors
for… vertexing & tracking?
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Momentum Reconstruction
● Relativistic particles in magnetic field:

•            circular track

•            straight track

• Else   helical track

● Lorentz force and centripetal force in equilibrium:

● Measurement of the radius of curved tracks 
yields transverse momentum pT

Simple approximation

with
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Momentum Measurement

θ

R

L

s● Radius can be determined by measurement of 
sagitta length s at track length L

● Uncertainty of momentum proportional to 
uncertainty of sagitta measurement:

● Uncertainties of sagitta measurement:
• Spatial detector resolution
• Multiple Coulomb scattering
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PDG 2022

Multiple Coulomb Scattering
Charged particles traversing medium are deflected by many small-angle scatterers

● Deflection off Coulomb potential of nuclei, Rutherford cross section:

● Many small-angle scatterings → Gaussian distribution of scattering angle (central limit theorem)
● Sometimes “hard” scattering with large angle, produce non-Gaussian tail,

described by Molière theory

Often a Gaussian approximation is enough, 
Standard deviation of distribution can be approximated via Highland Formula:

 

H. Bichsel, Phys. Rev. 112, 182
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Implications of Multiple Scattering
● Stochastic deflection leads to deterioration of the position resolution for tracking detectors

• Consequently tracking precision (e.g. momentum resolution is affected)
• Remedy by using light & thin materials

● Can be used to gain information on traversed objects:

ScanPyramids Project

Cosmic Muon Tomography:

Medical Imaging
electron CT:

Material Budget
Measurements:
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Secondary Vertex Reconstruction
● Not all particles decay immediately

• Produced at collision (primary vertex, PV)
• Propagation during finite lifetime
• Decay → secondary vertex (SV)

● Lifetime of b-quarks: 𝒪(10-12 s)
• Flight distance: 𝒪(100 μm)
• Can be resolved with modern

tracking detectors

• Indication of SV hints at b-quarks, used for e.g. b-Tagging
• Important top quarks decays
• Lifetime of b-mesons τ ≈ 10-12 s → d/ɣ ≈ 0.1 mm

IP Interaction Point
PV Primary Vertex
SV Secondary Vertex
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Gaseous Detectors
Primary & secondary ionization of gas atoms
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Gaseous Detectors: Operating Principle
● Primary signal: charged particle generates 

electron-ion pairs by ionization
• Noble gases: relatively low ionization energy

• Average energy to generate a pair ~30 eV

• Number proportional to deposited energy

● Amplification: different working ranges 
depending on applied voltage
• Medium voltages: proportional amplification

• High voltages: Avalanche formation due to 
secondary ionizations

Sauli, 2014

https://doi.org/10.1017/CBO9781107337701.009
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Proportional Counter
● Very similar to the Geiger counter: anode in the form of thin wire

● High field near wire leads to electron multiplication / signal amplification

● Choice of voltage: proportional range
• Output signal proportional to original number of ionizations
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Multi Wire Proportional Chamber (MWPC)
● Essentially many proportional counters next to 

each other, without separating walls
● Wires spaced a few millimeters apart

• Good spatial resolution of a traversing particle
• Large areas possible
• Electronic selection

● High rates possible: 1000 particles/s
for comparison, bubble chamber: 1-2 particles/s

● Nobel Prize 1992 for Georges Charpak
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Micropattern Gas Detectors

Gas Electron Multiplier (GEM)
● Perforated, metallized Kapton foil,

High voltage between electrodes
● Strong dipole field in perforation holes:

Gas amplification

Micro-Mesh Gas Detectors (Micromegas)
● Metallic micro-grid
● Electron avalanche evolution near the lattice:

Gas amplification

● Replacement of fragile wires by micro structures
● Potentially better spatial resolution and applicable for higher particle rate
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Time Projection Chambers (TPC)
● Large gas detector system

● Ionization along the particle track
• Electrons and ions drifting in the E-field

• Segmented anode: 2D information

• Measurement of drift time:
3D information

● Readout at anode side e.g. via
multi-wire proportional chamber, GEMs, …

    electric field 
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Time Projection Chamber
ALICE Experiment @ LHC
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Muon Spectrometers
● Identification and precise momentum measurement

of muons outside of the magnet – often gas detector systems used:
• Requires huge areas to be instrumented
• Position resolution is not extremely demanding

● Typical track in Muon System: ~ 20 hits
● Very often two possibilities for muon tracking:

• Standalone – purely based on muon system
• Combined – use info from inner detectors & muon system

● Standalone capabilities can be crucial at high luminosities
● The momentum measurement is dominated by 

• Inner detectors @ low pT 
• Muon system @ high pT

4. The ATLAS Muon Spectrometer 

ATLAS
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Muon Systems @ LHC
● Monitored Drift Tubes (MDT)

• Gas-filled drift tubes with central wire
• Signal read out on both ends 
• Spatial resolution increased by recording 

drift time.
32

ATLAS CMS

Both muon spectrometers use same technologies:
drift tubes for precision trajectory measurement 
+ CSC, RPC, TGC (ATLAS) 

z [m]

r [
m

]  ATLAS  CMS 

● Cathode Strip Chambers (CSC)
● Array of  anode wires crossed with copper 

cathode strips
● Short drift distances,  used at high-eta
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Muon Systems @ LHC (II)
● Resistive Plate Chambers (RPCs)

• Parallel plate electrodes with HV leads to 
uniform electric field in the gas gap

• Charge carriers drift towards anode,
generate avalanche in high electric field

• Large number of  charge carriers induces a 
signal on a read out electrodes

32

ATLAS CMS

Both muon spectrometers use same technologies:
drift tubes for precision trajectory measurement 
+ CSC, RPC, TGC (ATLAS) 

z [m]

r [
m

]  ATLAS  CMS 

●  Thin Gap Chambers (TGCs)
• Derivative of  MWPCs
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Semiconductor Detectors
Across the band gap into the conduction band
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Silicon Tracking Detectors in Particle Physics
1983: NA11 / CERN

2007: CMS Tracker / CERN

2000: ZEUS MVD / DESY

2017: CMS Phase 1 Pixel / CERN

● Silicon tracking detectors have long history in particle physics
● Instrumental in discovery of Higgs boson at LHC
● Larges detectors installed in ATLAS & CMS 

• Tracking detectors: strips, 200 m2 silicon, 70M channels
• Vertex detectors:  pixels, 1 m2 silicon, 140M channels

● Detector upgrades for HL-LHC in preparation
• More resilient against radiation-induced damage
• Additional capabilities (e.g. triggering)
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Detection Principle
● Solid state detector

• Many higher density than gas detectors

• High energy loss over relatively short distance

● Operating principle analogous to gas detectors
• "Ionization" to generate free charge carriers

• Drift due to electric field

• Detection as electrical signal at electrodes

● Semiconductors:
Silicon, Diamond, Germanium, GaAs, CdTe, … We will use many

analogies to gas detectors...
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Band Model

● Atom: discreet energy levels, orbitals

● Crystal lattice: energy levels blur 
into energy bands

● Formation of energy bands 
• Valence band – (last) fully filled

• Band gap

• Conduction band

                                                      

                          

H. Spieler
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Band Model: Insulator - Semiconductor - Conductor
● Position of valence and conduction band determines conduction property:
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Choice of the Semiconductor
● Semiconductor detectors in high-energy physics: almost exclusively silicon

• Industrially available via industry (availability, further development)
• Band gap large enough EG = 1.12 eV for operation at room temperature 
• Average energy for electron-hole generation: E = 3.64 eV (gas detector: x 10)

● Germanium: EG = 0.74 eV
• Too many free charge carriers at room temperature, needs cooling
• Better energy resolution, often used in spectrometers

● Diamond: EG = 5.4 eV, sometimes used for special radiation hardness 
requirements

● GaAs, CdTe, CYT... : mainly used in X-ray spectroscopy
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Detecting a Particle with Intrinsic Silicon
● Silicon sensor: A = 1 cm2 and d = 300 mμ
● Signal of MIP:

• Mean ionization:  E0 = 3.6 eV (silicon)
• Mean energy loss: dE/dx = 3.9 MeV/cm

●  Thermally excited charge carriers in silicon: ni = 1.45 x 1010 cm-3 (at 300K)

 

 dE/dx of protons in silicon 

  PDG 

ni⋅d⋅A = 1.45⋅1010cm−3⋅0.03cm⋅1cm2

≈ 4⋅108e /h pairs density silicon:
N ≈ 1022 atoms/cm3

dE
dx

⋅ d
E0

= 3.9⋅106eV /cm⋅0.03 cm/3.6 eV

≈ 3⋅104e /h pairs



08/08/2025Ingrid Maria Gregor / Simon Spannagel - DESY Summerstudent Lecture - HEP Detectors25

Doping Silicon – n-type
● Adding group-V element (phosphorus, arsenic)

● Four covalent bonds, one “dangling” e

● Introduces “donor” state

● Negative majority
charge carrier: “n”

typical doping (p-in-n sensor):
ND ≈ 1012 cm-3
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Doping Silicon – p-type
● Adding group-III element (boron, aluminum)

● Vacancy in covalent bonds – “hole”

● Introduces “acceptor” state

● Positive majority
charge carrier: “p”

typical doping (p-in-n sensor):
NA ≈ 1015 cm-3
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Forming a pn-Junction

● Electrons and holes diffuse over junction

● Constant Fermi level:
Deformation of energy bands

● Donor/acceptor atoms remain
• Depleted / space charge region (SCR)

• Potential Ubi builds up

● Thermal equilibrium:
Built-in potential balances diffusion

H. Spieler
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Built-in Voltage Ubi

● Potential across the junction:
difference of Fermi energies

● Thickness of built-in SCR:

U bi = EFn−EFp

= kBT ln (
N A ND

ni
2 )

d (U bi) = √ 2ϵr ϵ0
|N D−N A|

⋅U bi

p-in-n sensor:  Ubi ≈ 0.4 V

p-in-n sensor:  d ≈ 20 µm

silicon p-in-n sensor:

NA ≈ 1015 cm-3 
ND ≈ 1012 cm-3

kBT ≈ 0.026 V
ni = 1.45 x 1010 cm-3
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pn-Junction in Forward Bias
● Lowering potential difference

● Increases flow of electrons & holes

● Shockley eq.

H. Spieler

I=I 0(e
eU /kB T−1)

H. Spieler

+  –
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pn-Junction in Reverse Bias
● Raising potential difference

● Widens depletion region

● Shockley eq.

H. Spieler

I=I 0(e
eU /kB T−1)

H. Spieler

–  +

`
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pn-Junction in a Sensor

● Asymmetric pn-junctions, here: p-in-n

● Lightly doped n bulk sensor material

● Thin, highly-doped p implant

● Segmentation of implant:
separate channels

● Backside: layer of highly doped n+

as ohmic contact
H. Spieler

typical doping (p-in-n):
NA ≈ 1015 cm-3

ND ≈ 1012 cm-3
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Silicon Wafer Processing
● Patterning by selectively introducing impurities (dopants)

● Using photo lithography processes:

• Photoresist, etching, implantation

• Stepping due to limited reticle size

● Many steps involved in processing wafer,
sensors: fewer, coarse structures;
CMOS electronics: many more steps, fine structures
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Example: Building a CMOS Inverter
● Sensor electrodes, implants, transistors, traces 

are all defined via masks
• Patterning of wafer surface for each type

● Example here: Inverter - requires 6 masks
(and quite a few process steps… )

● Simplified representation of the process! 

n well

poly silicon

n+ diffusion

p+ diffusion

contact 

metal 

pMOS

nMOS

input: gate output
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Reticles & Stitching
● Deep submicron processes:

Illumination area limited by photolithography

● Reticle
• typically 2 cm x 3 cm

• limits maximum size of chips

● Limitation can be
overcome with stitching:
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Segmentation of the Electrodes
● Ionizing particle excites e- from valence band to conduction band during passage:

Generation of e/h pairs
● e/h pairs drift in electric field to electrodes, induce signal
● Segmentation of the electrode: very high spatial resolutions.

Small structures of a few 10 m possible; experience from electronics industryμ
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Signal Formation in Silicon Detectors
● Induced current by movement of charge carriers

● Diffusion - temperature-induced random motion,
   non-directional
  - Slow motion

● Drift  - Directional motion due to electric field
  - Only in depleting areas
  - Fast motion

● Total motion: Superposition 

● Best spatial resolution:
Interpolation of the signal between two electrodes:

e-

h

x =
∑
i

Qi x i

∑
i

Qi



08/08/2025Ingrid Maria Gregor / Simon Spannagel - DESY Summerstudent Lecture - HEP Detectors37

Spatial Resolution
● The probability of particle crossing particular detector channel

is uniformly distributed
● Normalized probability density function:

● Variance of position measurement:

● Uncertainty:
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Spatial Resolution – Multiple Channels
● Only approximation!

Many detectors provide better resolution than granularity!
● Just a single channel struck:

precision limited to variance of uniform distribution 

● Multiple channels struck (charge sharing):
interpolation using relative energy / charge distribution

Q

x
particle

x
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Strip Detectors
● Strips as readout electrodes
● Advantage:

• Readout electronics next to sensor, connected with
wirebonds,

• Relatively easy to build, inexpensive, good for large areas
● Disadvantage:

• Location measurement only along one coordinate
● Used for large areas:

Large radii from interaction point,
large lever arm for impulse measurement

ATLAS ITk barrel long strip module prototype
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Strip Detector – Adding a 2nd Layer
● 2D measurement using stereo angle

• Two detector modules on top of each other with a small relative rotation angle
• Limit on total particle rate due to ambiguities:

● “Ghost Hits”
• Appear with > 2 particles

crossing the sensor

• Impossible to distinguish
particle crossing point from
other strip coincidences 

→ Reason for small stereo angle! Reduce number of other strips crossed
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200 m² Silicon Strip Detector
CMS Tracking Detector Barrel
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Silicon Pixel Detectors
● Segmentation in two dimensions

• Advantage: Direct 2D spatial measurement,
no stereo angles required

• Disadvantages: Connection to readout electronics,
many more channels

● Different technologies, readout concepts, sensor structures
• Exact design of a sensor very complex (metallization, passivation...)
• Detectors designed and optimized for specific application (experiment)

● Pixel sizes of a few 10 m μ   →  good spatial resolution
● Sensor thicknesses of a few 100 m  μ →  Little multiple scattering

       CLICpix2 Prototyp
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Pixel Detector Technology: Hybrids
● Separation of readout electronics and sensor in two silicon chips

• Connection via small metal balls (bump bonds) or adhesive layer
• Sensor doping as desired, high voltage for depletion possible
• Readout chip can exploit full potential of commercial processes

● Small pixel sizes with lots of functionality possible - but very expensive to produce

Classic Hybrid Hybrid with capacitive       coupling
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Hybridization: Bump Bond Interconnects
● Different technologies available
● Very common: Bump bonding

• Size: ~ 10 – 20 µm
• Material: Lead-Tin, Indium, …

● Different placement techniques
● Solder spheres → individual chips
● Via lithography → wafer-level

Sensor

CLICpix2 ASIC
https://doi.org/10.1088/1748-0221/14/06/C06003

https://doi.org/10.1088/1748-0221/14/06/C06003
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Hybrid Silicon Pixel Detector
100 m Timepix with 100 μ m sensorμ
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Example: CMS Pixel Detector

HDI (High Density Interconnect,
signal and power handling)

n+-in-n silicon sensor

16 readout chips, bump 
bonded to sensor

Base strips for mounting

Twisted pair cable • Sensor:

– n+-in-n sensor technology

– 285 μm thickness

– 150 x 100 μm pitch

• Module:

– 52 x 80 = 4160 pixels/chip

– 16 chips → 4160 x 16 
= 66560 pixels/module

– Total size: 64.8 x 16.2 mm
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Example: CMS Pixel Detector

HDI (High Density Interconnect,
signal and power handling)

n+-in-n silicon sensor

16 readout chips, bump 
bonded to sensor

Base strips for mounting

Twisted pair cable • Sensor:

– n+-in-n sensor technology
– 285 um thickness
– 150 x 100 μm pitch
– 52 x 80 = 4160 pixels/ROC
– 16 ROCs → 4160 x 16 = 

66560 pixels/module
– Total size: 64.8 x 16.2 mm
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Example: CMS Pixel Detector

● Innermost part of the CMS Detector
• Four barrel layers

● Radii: 3.0, 6.8, 10.2, 16.0 cm
● Length: 54.9 cm

• Three endcap layers per side
● Radii: 4.5 – 16.1 cm

● Total number of modules: 1856
● 124 MPix – with 25 ns time resolution

● Spatial resolution: > 5 µm
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Endcap and Half Barrel
CMS Phase I Pixel Detector
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Installation of Phase I Pixel Detector
CMS-Experiment @ LHC
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Pixel Detector Technology: Monolithic Sensors
● Goal: minimal material with the greatest possible precision.

● Removal of the readout chip, implementation of the electronics in the sensor
• Cheaper, because no bump bonding, less material

• Problem: CMOS electronics can only tolerate low voltage, limited depletion

● Different technologies to isolate "sensor" and "electronics

HV-CMOS HR-CMOS
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The ALPIDE Sensor of the ALICE ITS2
● Full Inner Tracking System: 24’000 ALPIDE chips, 

one of the first large-scale detectors with MAPS
● ALPIDE – MAPS in 180 nm CMOS imaging technology

• 512 × 1024 pixels, 29 µm x 27 µm pitch
• Binary detection & readout (hit/no hit)
• Optimized for low power consumption
• Produced on epitaxial layers of 18 – 30 µm

http://dx.doi.org/10.1016/j.nima.2016.05.016 ALPIDE pixel cell
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http://dx.doi.org/10.1016/j.nima.2016.05.016
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Large Area MAPS Detector
ALICE ITS2 Outer Barrel
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Large-Area MAPS Detector
ALICE ITS2 Inner Barrel



Combining Strip & Pixel Detectors

Typical Compromise
● Pixel detector at center of experiment

• Smaller size → reduces costs
• Pixel detector can cope with high 

occupancy close to IP
● Strip detector at larger radii

• Lower occupancy 
→ reduced probability for 
ghost hits

• Reduction in number of
readout channels 

CMS
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