INTRODUCTION TO ACCELERATORS.

Part II: Physics and engineering behind technical components

Gregor Loisch

Machine (M) Division – Injection Group MIN Deutsches Elektronen-Synchrotron DESY

28.07.2025

Purpose of this lecture

Get a glimpse on the (physics-heavy) "technical" side of accelerators

- ► Particle accelerators are composed of 100's 1000's individual devices/components
- Every component is a field of study of its own
- Combines various physics/engineering skills
 - Particle physics, EM-field dynamics, vacuum/fluids, plasmas, ...
 - Electronics, mechanical engineering, material science, ...
- Accelerators are a mature technology BUT: still research and development on ~all components with regular paradigm shifts and new inventions
- → lots of interesting work in a most interdisciplinary field!

There are 10's of different types of accelerators/components, enough for weeks of lectures.

Today: introduction of concepts with some current examples from DESY and references for further reading...

Minimum take-away: Most (patented) inventions are transfers of concepts between fields/disciplines

→ Maybe you take some with you today ©

Technical components in an accelerator

What do we roughly need to get usable particle beams?

- Particle source
 - lons
 - Electrons
 - Photocathode investigations
 - Positrons
- Accelerating structures
 - ▶ DC
 - Radiofrequency structures
 - Radiofrequency systems
 - New e⁻ gun for "REGAE"
- Diagnostics
- Pulsed ("kicker"/"septum") magnets
 - Overview
 - Beam injection @PETRA IV
- DC magnets

lon sources

- ► Free ions ~ not available (in large numbers)
 - ▶ lons & electrons form stable atoms
 - Atoms form molecules/crystals
- → Mechanism to set ions free?!
- ► Typically: form plasma & "suck" ions out
 - → various types of plasma formation
 - Arc discharge
 - RF plasma
 - lon trap
 - ..
- Why different types?
 - ► Elements are gaseous / solid /conducting / insulating / radioactive...
 - Applications need high current / high charge state /...

Child-Langmuir law: $J_{CL} = \frac{4\sqrt{2}}{9} \epsilon_0 \sqrt{\frac{e}{m}} \frac{V^{3/2}}{d^2}$

Image Credit: O. Kester

Particle sources

lon sources

- ► B-field: electrons → cyclotron motion
 - Increase path length
 - → more collisions/ionisation
- High charge states: maximise interaction time
 - → trap ions & heat up electrons
- Beam extraction
 - Extraction electrodes
 - Low energy beam transport (LEBT)
 - → matching beam into accelerator
- Special case: negative ions!
 - Several applications
 - Inject into circulating bunch (DESY III)
 - Neutral beam into fusion plasma
 - ► lons attach e⁻ in plasma
 - ▶ Opposite extraction polarity → separate electrons

Electron sources

- ► Free electrons ~ not available
 - lons & electrons form stable atoms
- → Mechanism to set electrons free?!
 - (Collisional ionisation)
 - ► (Field ionisation)
 - Thermal ionisation
 - Photoionisation

Richardson's law:
$$\mathbf{J} = \mathbf{A}\mathbf{T}^2\mathbf{e}^{-\frac{\mathbf{W}_0}{k_{\mathbf{B}}\mathbf{T}}}$$

- ► Thermionic guns
 - Workhorse in most synchrotron light sources
 - Emission ~ T > 1000 K
- Source requirements/parameters
 - Bunch charge
 - Bunch length
 - Beam quality (i.e., particle density/uniformity)
 - Longevity!

LINAC II electron gun

Electron sources - photoelectron guns

- ► Electrons for "precision" applications
 - ► High electron density → good beam quality
 - Wide charge range
 - Short bunches possible (~ps ns)
 - Spin polarised beams possible
 - → Free-electron lasers, linear colliders, ...
- Photocathode in accelerating field
 - Direct acceleration
 - Reduce space charge effects quickly
- Physics/engineering challenges
 - Source material properties/production
 - Laser physics/engineering
 - Integration into vacuum/acceleration structure
 - → Mechanical design, EM field dynamics

Photoelectron guns - measuring minimum possible bunch length

- Electrons ionised by UV photon on photocathode
- Immediate acceleration by E-field
- BUT: bunch length ~fs − ps!
 → every path difference changes extraction timing
- Variation of extraction timing = minimum bunch length
- How to measure this:
 - Measure length of laser pulse
 - Produce 2 bunches with known delay
 - Measure beam time profile
 - → distance gives reference for time basis
 - → compare bunch shape w/ laser pulse shape
- ► Result for FLASH/European XFEL: ~180fs in Cs₂Te cathode

Secondary particle sources - Positrons

- ► Free positrons ~ not available
 - No stable positrons around
- → Mechanism to create free positrons????!!!!
 - ▶ Pair production!
- ► How to produce pairs (in large numbers)
 - Need gamma photon & nearby heavy particle (e.g. atomic nucleus; → momentum & energy conservation)
 - Particle beam stopping in heavy metal
 - Bremsstrahlung gamma photons
 - ► Pair production in same target
 - Gamma photons into metal
 - Produce gamma photons separately
 - Shoot photons onto metal target

DESY's LINAC II positron source (retired)

Cockcroft-Walton cascade generator

1928

Image Credit: K. Wille

DC acceleration

- First accelerators used DC voltage
 - Most basic setup
 - Only high voltage that was available
 - Allows DC beam
- Different ways to produce high voltage
 - Van-de-Graaf generator
 - Cockcroft-Walton voltage cascade
- Basic issue: electrical breakdown!
 - DC voltage > MV hard to insulate

Van de Graaff accelerator

Image Credit: K. Wille

- Extension of DC accelerators: Tandem acc.
 - Change charge of particles at high voltage potential → accelerate to ground by same amount!
 - Additional feat: source & experiment on ground...

Tandem Van de Graaff accelerator

Image Credit: K. Wille

AC / Radiofrequency (RF) acceleration

- Proposed by Gustaf Ising & first realised by Rolf Widerøe (1928)
 - ▶ Use several tube electrodes & connect to AC voltage
 → deceleration shielded; acceleration in every gap
 - Basic principle still used today
- Main issues:
 - ► Tube length too large at high velocity
 - electrodes = antenna at > ~10 MHz
- Solution?
 - ► Resonant cavities → no RF radiation
 - Tank = resonant circuit
 - ► Frequencies ~10 MHz ~20 GHz
- Prinicpal distinction:
 - \blacktriangleright Low-β (v<<*c*; ions at low energy)
 - ightharpoonup High-β (v~c; e- & ions at high energy)

Bild 6. Die Versuchsröhre

Image Credit: R. Widerøe, Archiv fuer Elektrotechnik, 28, 387-406 (1928)

Radiofrequency (RF) sources

- Need source for high power RF!
- First device: magnetron
 - Still in use today (industry, microwave ovens!)
 - ► Issue: RF created in device → no synchronisation
- ► Need RF amplifier (small signal distribution & amplification for accelerating structures)
- Continuous wave (CW) amplifiers (ring accelerators!)
 - Tube amplifiers (similar to old radios, just bigger...)
 - Solid state amplifiers
- ► BUT: Higher RF power → more acceleration > 100's kW → need pulsed operation
- Pulsed RF amplifier
 - "Klystron" → developed in WW2 for radar
 - Converts ~DC voltage into RF
 - Klystron powered by high voltage modulator
 - < ~150MW pulsed RF power

Klystron schematic

AC / Radiofrequency (RF) acceleration

- ► High- β ~no change of velocity \rightarrow periodic structures
- Two types of structure
 - Standing wave
 - Traveling wave
- Number of bunches per second?
 - Many → long RF pulse → standing wave
 - Few → short RF pulse → ~traveling wave
- Acceleration: RF power transfer to beam
 - Efficiency depends on structure & beam
 - Rest: heat dissipation in structure
 - → "Quality factor" = oscillations before 1/e damping
- Material choice
 - ► Normal conducting (~Cu): T_{RF} << 1%
 - ► Superconducting (\sim Nb): $T_{RF} \ge \sim 1\%$

Image Credit: W. Wuensch, CERN

Current development: high repetition rate electron gun (for REGAE)

- ► REGAE: ultrafast electron microscope (bunch length ~ fs)
- Data taking speed ~ bunches/second
 - → more RF pulses per second → faster data (today: ≤ 50 Hz)
- Current development: electron gun for 1000 Hz
- Challenges:
 - ► Heating!
 - → RF pulses as short as possible
 - → minimum pulse length ~ "resonance" quality of cavity
 - → trade-off: resonance (i.e. acceleration/power)
 vs. filling time
- Typical simulation codes: CST, Comsol, Ansys
- Iterations between:
 - EM simulation
 - Beam dynamics
 - Thermo-mechanical sim.

Heating in a gun cavity

Image Credit: Ilker Ilgün & Valentin Paramonov

Mechanical stress in a gun cavity

Diagnostics

How to "see" your beam; some basic concepts...

- Particles are not "visible"
- What do we need to know?
 - ► How many particles are there? → bunch charge
 - Faraday-Cup (destructive)
 - Current transformer / mirror current monitor (non-destructive)
 - Where are they? → bunch position
 - Scintillator screen (destructive)
 - Beam position monitor (non-destructive)
 - ► How big is the bunch? → transverse size
 - Scintillator screen
 - Wire scanner (...)
 - ► How long is the bunch? → longitudinal size
 - Measure current signal (~>ns)
 - Complex.... (TDS, CSR, ...)
 - ► How is the bunch quality? → size & divergence
 - Measure size & size after drift...

Faraday Cup

Beam Position Monitor (BPM)

"Kick" bunches into the right direction

- Why a pulsed magnet?
 - ► Train of bunches → multiple experiments
 - ▶ Ring full of bunches → get additional bunch in
- Two types of pulsed magnets
 - "Kicker": one beam pipe, FAST pulses (<ns >µs)
 - → fast/small kick
 - "Septum": two beam pipes VERY close, slower pulse (> μs)
 - → beams as close/parallel as possible
- ► Typical challenges/tasks:
 - ► High voltage electronics (kV, kA → MW!, ns-μs)
 - EM field simulations (eddy currents, parasitic inductance/capacitance, ...)
 - ► Material science (EM material properties in MHz GHz)

"Kick" bunches into the right direction

- Various types of kickers
 - Single/few loop magnet
 - "Transmission line kicker"
 - → coil with capacitances → compensate inductivity
 - Stripline kicker
 - → 2 beam-parallel electrodes → E & B fields → ~coaxial cable
- Septum magnets
 - Electrostatic (ions)
 - DC "Lambertson"
 - Eddy current shielded
- New pulsed HV components: Plasma cells!
 - ▶ New acceleration method: plasma wakefield acceleration
 - Sometimes plasma created by electrical discharge
 - → pulsed high voltage like kickers

Single loop kicker

Discharge plasma cells

PETRA IV storage ring injection devices

- ► PETRA IV: upcoming upgrade of PETRA lightsource
- ▶ 3 rings need injection (&extraction)
 - PIA (accumulator ring)
 - DESY (energy booster synchrotron)
 - PETRA (synchrotron radiation storage ring)
- Very demanding PETRA injection kickers
 - ➤ Kick only 1 bunch on injection→ kicker pulse length ~4ns
 - Kick voltage ~15kV
 - Additional challenge: beam mirror currents heat kicker
- ► Extensive development & prototype programme
 - Simulations (EM, thermal & mechanical)
 - Prototype manufacturing
 - Testing at MAX IV accelerator (Lund, SE)

PETRA IV storage ring injection devices

- ► High voltage pulse electronics
 - < ns rise time, < 15 kV VERY challenging</p>
 - ► HV switch rise times > ~ns
 - → special diodes (difficult ~ export controlled)
- ► Thin eddy current septum
 - Septum shield 1mm thick
 - Low leakage field (disturbance of circulating beam)
 - Extensive material tests
 - **Cu**
 - μ-metal
 - ..
- Final task: series production!
 - ~20 kickers have to be manufactured
 - ► Requires some logistics & planning...

DC magnets

Static & slowly ramped magnets

- Magnets for bending & focusing of beam
- Main component in ring
- Normal conducting (NC)
 - Current in wound conductor
 - Field guiding / shaping with ~iron "yoke"
 - Field ≤ ~2 T (~saturation of iron)
- Superconducting (SC)
 - ► Field >> 2 T
 - ► No yoke → no guiding → field ~conductor shape

NC Dipole/Quadrupole cross-sections

NC PETRA III magnets

- ► Typical tasks/challenges
 - Magnetic field simulation
 - Mechanical design (cooling, conductor bending, yoke manufacturing,..)
 - ▶ Material science (superconductors, magnetic materials, ..)
 - Cryogenics

Rutherford cable

SC LHC dipole cross-section

HERA tunnel at DESY

Summary

... & final remarks

- Physical/Technical components make accelerators!
- ~every (scientific) accelerator is unique
 - → custom-made components
- ► Ever higher demands → lots of RnD!
- Accelerator technology is
 - Interesting,
 - Inter-disciplinary,
 - Never(!?)-ending,
 - Teamwork,
 - ► Fun!
- Questions/comments/...: Now or contact us any time!

Thank you very much!

Kontakt

Gregor Loisch

Machine Injection Group MIN MIN2: short pulsed RF systems

Telephon: +49 (0)40 8998-4961 E-Mail: gregor.loisch@desy.de

Deutsches Elektronen-Synchrotron DESY

Notkestraße 85 22607 Hamburg www.desy.de

Further reading:

Handbook of Accelerator Physics and Engineering

Editors: A. W. Chao, K. H. Mess, M. Tigner

ISBN: 978-9-814-41584-2

RF Linear Accelerators

Author: T. P. Wangler ISBN: 978-3-527-40680-7

CERN Accelerator School - Ion Sources - Proceedings

Senec (Slovakia), 2012;

Editor: R.Bailey CERN-2013-007

CERN Accelerator School - Magnets - Proceedings

Bruges (Belgium), 2010;

Editor: D. Brandt CERN-2010-004

SLAC: Fabricating the Linear Accelerator

Youtube

SLAC National Accelerator Laboratory

https://www.youtube.com/watch?v=oMgMNlgkqIY&ab

