## LHC Physics - Electroweak & Top



#### Lydia Beresford

DESY Summer Student Lectures 04.08.25



## Physics Goals of the LHC



# Measure the Standard Model

## Standard Model particles



#### **Standard Model interactions**



4

#### The Standard Model (SM)

# See lectures by: Hyungjin Kim for more on HEP Theory Markus Diehl for more on QCD

#### Gauge boson self-interaction

Gauge boson fermion interactions

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} 
+ i F D + h.c. 
+ Y : Y : Y : P + h.c. 
+ |D p|^2 - V (p)$$

## The Feynman picture

## Standard Model Interactions (Forces Mediated by Gauge Bosons)



X is any fermion in the Standard Model.



X is electrically charged.



X is any quark.



U is a up-type quark; D is a down-type quark.



L is a lepton and v is the corresponding neutrino.





X is a photon or Z-boson. X and Y are any two



X and Y are any two electroweak bosons such that charge is conserved.



## The Cabibbo-Kobayashi-Maskawa (CKM) matrix



See lectures by Thibaud Humair for more on flavour physics

Contains information about flavour-changing weak interactions

+2/3 e

Charge

-1/3 e

wikipedia

## Rediscover Z boson (& W boson) at LHC

#### **Drell-Yan:**



- · Characteristic clean signature:
  - 2 opposite charge, same flavour leptons

Fun-fact: Z-boson decays to

- Quarks ~70%
- Neutrinos ~20%
- Charged leptons ~10%

#### Z boson candidate event



#### Rediscover Z boson at LHC

#### Early data-MC comparisons:





## Di-muon mass spectrum



Quiz: What is the continuum?

<u>2037379</u>

## Z+jets measurements

# Important process & background for many new physics searches:

#### Understanding Z boson p<sub>T</sub> spectrum is important:

- Unfolding: Turn "measured" data spectrum into particle level spectrum
- Unfolded spectrum
  - → Easily compared to simulated samples



## Z+jets measurements

# Important process & background for many new physics searches:

#### Understanding Z boson p<sub>T</sub> spectrum is important:

- Unfolding: Turn "measured" data spectrum into particle level spectrum
- Unfolded spectrum
  - → Easily compared to simulated samples



#### Z bosons as standard candles

#### **Energy/momentum calibration**

- Adjust the position of the Z peak until it corresponds to the value we expect
- Done by adjusting energy/momentum scale

#### Lepton efficiency measurements

· Need clean lepton sample to measure reconstruction/identification/isolation efficiencies

#### "Tag and Probe" method:

Select two lepton candidates with tight (Tag) and looser (Probe) selection criteria

Require di-lepton mass to be around Z peak

→ Likely that both leptons are "good" leptons



## W boson candidate event



ATLAS event display

#### W bosons



| Decay mode branching ratio |      |
|----------------------------|------|
| $ear{ u}_e$                | ~1/9 |
| $\muar u_\mu$              | ~1/9 |
| $	auar u_{	au}$            | ~1/9 |
| $u\bar{d}$                 | ~1/3 |
| $C\overline{S}$            | ~1/3 |

Characteristic signature:
 Charged lepton and neutrino (MET)

Quiz: why is the branching ratio to  $u\bar{d}$  higher than to  $e\bar{\nu}_e$ ?

Adapted from <u>254469235</u>

## W+ vs W- asymmetry

#### At the LHC:

- W+ produced at higher rate than W-
- · W+ bosons produced at higher rapidities

#### Main reasons:

W+ production more often involves valence quark u carries more of proton momentum than d on avg

## W bosons typically produced from valence-sea quark annihilation



17

## In practice: measure lepton charge asymmetry







Measurements can help to constrain u and d PDFs

**HERAPDF** method

HERA+CMS / HERA

 $Q^2 = m_W^2$ 

## Going to rarer and rarer SM processes

#### **Standard Model Production Cross Section Measurements**

Status: June 2024

# Top quark pair production

→ LHC is a top factory



ATL-PHYS-PUB-2024-011

## Top quark pair candidate event



ATLAS Event Display

## Going to rarer and rarer SM processes

# Top quark pair production

→ LHC is a top factory





## Top quark pair production

#### Heaviest quark in the SM

- Decays before it can hadronise
- Decays almost exclusively to Wb



Has become a "standard candle" at the LHC 22

#### Top quark pair production

#### Heaviest quark in the SM

- Decays before it can hadronise
- Decays almost exclusively to Wb





Has become a "standard candle" at the LHC 23

## Top quark pair production









Higher signal stats but more backgrounds & combinatorics more challenging

## Top pair production cross section



Excellent agreement between measurement and prediction

ATL-PHYS-PUB-2024-006

#### Going to rarer and rarer SM processes



## Single top quark production

Much rarer process compared to pair production (~ factor 3 lower at 13 TeV)

Three main production modes





27

## Hot off the press: toponium?

Quarks can form bound states (hadrons) e.g.  $J/\psi$  is charm anti-charm

Top quark is very short-lived → Decays before it hadronises

ATLAS & CMS recently observed data excess at top anti-top mass threshold → Could be explained by existence of toponium

Toponium: Top and anti-top momentarily pair up in a "quasi-bound-state"



CERN press release

ATLAS-CONF-2025-008

CMS 2503.22382

## Going to rarer and rarer SM processes



#### **Photon-fusion WW**

#### Use clean $e^{\pm}\mu^{\mp}(+\nu\bar{\nu})$ events

Di-lepton mass > 20 GeV, di-lepton p<sub>T</sub> > 30 GeV, n<sub>trk</sub>=0



#### Sensitive to anomalous gauge self-interactions



## Significances

- How likely is the excess produced by a fluctuation of the background
- · Different ways of estimating this, with various approximations
- Translate probability into standard deviations



 $0.05 \rightarrow 2 \text{ sigma}$ 

 $0.003 \rightarrow 3 \text{ sigma (evidence)}$ 

 $0.0000003 \rightarrow 5 \text{ sigma (discovery)}$ 



Imagine this plot without the white histogram

#### **Photon-fusion WW**

#### Observed significance well above 5 sigma



$$\sigma_{\text{meas}} = 3.13 \pm 0.31 \text{ (stat.)} \pm 0.28 \text{ (syst.)} \text{ fb}$$

#### Sensitive to anomalous gauge self-interactions



#### The LHC as a photon collider



## Photon-fusion WW candidate event



PLB 816 (2021) 136190

#### **Standard Model Production Cross Section Measurements**

Status: June 2024



## Measuring top quark mass

Fermion masses are free parameters in SM

Top quark is heaviest particle in SM, does it play a special role?

W, top & Higgs masses are related

CMS most precise single measurement  $171.77 \pm 0.38$  GeV

(Including 0.04 GeV statistical uncertainty)



#### Measuring top quark mass

## All channels used to measure top quark mass

#### LHCTopWGSummaryPlots



#### ATLAS W mass measurement

#### Special dataset collected with low pile-up

4.6 fb<sup>-1</sup> at 7 TeV  $\rightarrow$  about 15.5 M W<sup>+</sup> and 10.4 M W<sup>-</sup> events collected (leptonic decays)

#### Analysis strategy based on two kinematic distributions fitted in several categories



$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$$

 $\Delta\phi$  Is beween charged lepton and missing transverse momentum

 $m_W = 80370 \pm 7 ({
m stat.}) \pm 11 ({
m exp. \ syst.}) \pm 14 ({
m mod. \ syst.}) {
m MeV} \ = 80370 \pm 19 {
m MeV},$ 

13 TeV low pile-up dataset on tape→ Stay tuned!

#### W bosons

#### Recent CMS measurement using high pile-up dataset: 80360.2 $\pm$ 9.9 MeV





39

#### A word on global SM fits

Top, W, Higgs mass are related through higher order corrections Indirectly 'predict' top mass and Higgs mass before discoveries





Nature 428, 141–144 (2004)

**SM** internally consistent

## SM fits before the Higgs discovery: 2012

Predicting the Higgs mass  $m_H = 95^{+30}_{-23}$  GeV incl top and W mass measurements



## Next lecture



Search for the Higgs Boson

#### Standard Model of Elementary Particles



#### The Standard Model



## In practice: measure lepton charge asymmetry



$$\mathcal{A}(\eta) = rac{\sigma_{\eta}^{+} - \sigma_{\eta}^{-}}{\sigma_{\eta}^{+} + \sigma_{\eta}^{-}}$$

Eur. Phys. J. C 76 (2016) 469



#### Top quark mass measurement

#### Two masses (differ by ~0.4 GeV)

- "MC mass": mass reconstructed from the decay products (affected by strong interactions)
- Pole mass: mass of free particle ("rest mass")

#### How would you get the pole mass?

- measure cross sections that do not depend on detailed reconstruction of top final states
- cross sections depend on the mass

#### MC Mass



