QCD Part 1

M. Diehl

Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2025, Hamburg

HELMHOLTZ

Plan of lectures

- Brief introduction
- Renormalisation, running coupling, running masses scale dependence of observables
- ▶ e^+e^- → hadrons some basics of applied perturbation theory
- ► Factorisation and parton densities using perturbation theory in *ep* and *pp* collisions

these lectures: present theory concepts for measurements see Lydia Beresford's lectures on LHC physics

Quantum chromodynamics (QCD)

- theory of interactions between quarks and gluons
- different from weak and electromagnetic interactions because coupling α_s is large at small momentum scales
 - quarks and gluons are confined inside bound states: hadrons (proton, neutron, pion, ...)
 - weak-coupling expansion in α_s at high momentum scales, "asymptotic freedom"
- symmetries
 - gauge invariance: group $SU(3) \leftrightarrow colour$ charge electromagnetism: $U(1) \leftrightarrow electric$ charge
 - Lorentz invariance and discrete symmetries:
 P (parity = space inversion)
 C (charge conjugation)
 - ullet chiral symmetry for zero masses of u,d and s
- ightharpoonup embedded in Standard Model: quarks couple to γ , W, Z and H

Why care about QCD?

- without quantitative understanding of QCD would have very few physics results from LHC, Belle, . . .
- \blacktriangleright α_s and quark masses are fundamental parameters of nature need e.g.
 - m_t to compute many electroweak effects \rightarrow Higgs physics
 - α_s to discuss possible unification of forces
- QCD is the one strongly interacting quantum field theory we can study in experiment. many interesting phenomena:
 - structure of proton
 - confinement
 - chiral symmetry and its breaking (blueprint for many composite Higgs models)
 - mathematics: (non)-convergence of perturbative series

Basics of QCD perturbation theory

split Lagrangian into free and interacting parts:

$$\mathcal{L}_{QCD} = \mathcal{L}_{free} + \mathcal{L}_{int}$$

- $\mathcal{L}_{\mathsf{int}}$: interaction terms $\propto q$ or q^2 $\alpha_s = q^2/(4\pi)$
- expand process amplitudes, cross sections, etc. in powers of q
- Feynman graphs visualise individual terms in expansion
- \triangleright from $\mathcal{L}_{\text{free}}$: free quark and gluon propagators
 - in position space: propagation from x^{μ} to y^{μ}
 - in momentum space: propagation with four-momentum k^{μ}
- \triangleright from \mathcal{L}_{int} : elementary vertices

Loop corrections

- ▶ in loop corrections find ultraviolet (UV) divergences
- only appear in corrections to elementary vertices propagators n_F 00000 n_F

Exercise: Draw the remaining one-loop graphs for all propagators and elementary vertices

- origin of UV divergences: region of ∞ ly large loop momenta \leftrightarrow quantum fluctuations at ∞ ly small space-time distances
- idea: encapsulate UV effects in (a few) parameters when describing physics at a scale $\mu \rightsquigarrow$ renormalisation

- ▶ origin of UV divergences: region of ∞ ly large loop momenta \leftrightarrow quantum fluctuations at ∞ ly small space-time distances
- idea: encapsulate UV effects in (a few) parameters when describing physics at a scale $\mu \leadsto$ renormalisation
- technically:
 - 1. regulate: artificial change of theory making div. terms finite
 - physically intuitive: momentum cutoff
 - in practice: dimensional regularisation (dim. reg.)
 - 2. renormalise: absorb UV effects into
 - coupling constant $\alpha_s(\mu)$
 - quark masses $m_q(\mu)$
 - quark and gluon fields (wave function renormalisation)
 - 3. remove regulator: quantities are finite when expressed in terms of renormalised parameters and fields
- renormalisation scheme: choice of which terms to absorb " ∞ " is as good as " $\infty + \log(4\pi)$ "

Dimensional regularisation in a nutshell

- lacktriangle choice of regulator pprox choice between evils
- dim. reg.: no physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

$$\int \frac{d^D k}{(2\pi)^D} \frac{1}{k^2 - m^2} \frac{1}{(k-p)^2 - m^2}$$

log. div. for
$$D=4$$
 converg. for $D=3,2,1$

▶ more detail ~> blackboard

Dimensional regularisation in a nutshell

- lacktriangle choice of regulator pprox choice between evils
- dim. reg.: no physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

$$\int \frac{d^D k}{(2\pi)^D} \frac{1}{k^2 - m^2} \frac{1}{(k-p)^2 - m^2}$$

$$\begin{array}{l} \text{log. div. for } D=4 \\ \text{converg. for } D=3,2,1 \end{array}$$

- procedure:
 - 1. formulate theory in D dimensions (with D small enough)
 - 2. analytically continue results from integer to complex D original divergences appear as poles in $1/\epsilon$ $(D=4-2\epsilon)$
 - 3. renormalise (MS scheme: subtract poles and a const.)
 - 4. take $\epsilon \to 0$

Dimensional regularisation in a nutshell

- ightharpoonup choice of regulator pprox choice between evils
- dim. reg.: no physics intuition, but keeps intact essential symmetries (gauge and Lorentz invariance)
- idea: integrals for Feynman graphs become UV finite in lower space-time dimension, e.g.

$$\int \frac{d^D k}{(2\pi)^D} \frac{1}{k^2 - m^2} \frac{1}{(k-p)^2 - m^2}$$

$$\begin{array}{l} \mbox{log. div. for } D=4 \\ \mbox{converg. for } D=3,2,1 \end{array}$$

- \blacktriangleright enter: a mass scale μ
 - coupling in $4-2\epsilon$ dimensions is $\mu^{\epsilon}g$ with g dimensionless necessary to get dimensionless action $\int d^D x \mathcal{L}$
 - any other regularisation introduces a mass parameter as well
 - \rightsquigarrow renormalised quantities depend on μ

Renormalisation group equations (RGE)

scale dependence of renormalised quantities described by differential equations:

$$\frac{d}{d \log \mu^2} \alpha_s(\mu) = \beta \left(\alpha_s(\mu)\right) \qquad \alpha_s = \frac{g^2}{4\pi}$$

$$\frac{d}{d \log \mu^2} m_q(\mu) = m_q(\mu) \gamma_m \left(\alpha_s(\mu)\right)$$

eta, $\gamma_m =$ perturbatively calculable functions in region where $\alpha_s(\mu)$ is small enough

$$\beta = -b_0 \alpha_s^2 \left[1 + b_1 \alpha_s + b_2 \alpha_s^2 + b_3 \alpha_s^3 + \dots \right]$$

$$\gamma_m = -c_0 \alpha_s \left[1 + c_1 \alpha_s + c_2 \alpha_s^2 + c_3 \alpha_s^3 + \dots \right]$$

coefficients known including b_4, c_4 (five loops) (b_4 since 2016)

$$b_0 = \frac{1}{4\pi} \left(11 - \frac{2}{3} n_F \right) \qquad c_0 = \frac{1}{\pi}$$

The running of α_s

 $ightharpoonup \beta_{QCD} < 0$ $\Rightarrow \alpha_s(\mu)$ decreases with μ

Gross, Politzer and Wilczek

asymptotic freedom at large μ

plot: Review of Particle Properties 2024

perturbative expansion becomes invalid at low μ quarks and gluons are strongly bound inside hadrons: confinement momenta below $1 \, \mathrm{GeV} \leftrightarrow \mathrm{distances}$ above $0.2 \, \mathrm{fm}$

The running of α_s

• truncating $\beta = -b_0 \alpha_s^2 (1 + b_1 \alpha_s)$ get

$$\alpha_s(\mu) = \frac{1}{b_0L} - \frac{b_1 \log L}{(b_0L)^2} + \mathcal{O}\Big(\frac{1}{L^3}\Big)$$

with
$$L = \log \frac{\mu^2}{\Lambda_{\rm QCD}^2}$$

plot: Review of Particle Properties 2024

- dimensional transmutation: mass scale $\Lambda_{\rm OCD}$ not in Lagrangian, reflects quantum effects
- more detail → blackboard

The running of α_s

• truncating $\beta = -b_0 \, \alpha_s^2 \, (1 + b_1 \alpha_s)$ get

$$\alpha_s(\mu) = \frac{1}{b_0L} - \frac{b_1 \log L}{(b_0L)^2} + \mathcal{O}\left(\frac{1}{L^3}\right)$$

with
$$L = \log \frac{\mu^2}{\Lambda_{\rm QCD}^2}$$

plot: Review of Particle Properties 2003

- dimensional transmutation: mass scale $\Lambda_{\rm OCD}$ not in Lagrangian, reflects quantum effects
- more detail → blackboard

Scale dependence of observables

- lacktriangleright observables computed in perturbation theory depend on renormalisation scale μ
 - implicitly through $\alpha_s(\mu)$
 - explicitly through terms $\propto \log(\mu^2/Q^2)$ where Q= typical scale of process
 - e.g. $Q=p_T$ for production of particles with high p_T
 - $Q = M_H$ for decay Higgs \rightarrow hadrons Q = c.m. energy for $e^+e^- \rightarrow$ hadrons
 - Q = c.m. energy for $e^+e^- \rightarrow \text{nadrons}$
 - $\blacktriangleright \ \mu$ dependence of observables must cancel at accuracy of the computation
 - see how this works \rightsquigarrow blackboard

Scale dependence of observables

ightharpoonup for generic observable C have expansion

$$C(Q) = \alpha_s^n(\mu) \left[C_0 + \alpha_s(\mu) \left\{ C_1 + nb_0 C_0 \log \frac{\mu^2}{Q^2} \right\} + \mathcal{O}(\alpha_s^2) \right]$$

Exercise: check that this satisfies

$$\frac{d}{d\log\mu^2} C = \mathcal{O}(\alpha_s^{n+2})$$

- ⇒ residual scale dependence when truncate perturbative series
- ▶ at higher orders: $\alpha_s^{n+k}(\mu)$ comes with up to k powers of $\log(\mu^2/Q^2)$
 - choose $\mu \sim Q$ so that $|\alpha_s \log(\mu/Q)| \ll 1$ otherwise higher-order terms spoil series expansion

Example

- inclusive hadronic decay of Higgs boson
 via top quark loop (i.e. without direct coupling to b quark)
- ▶ in perturbation theory: $H \to 2g$, $H \to 3g$, ... calculated to N³LO and to N⁴LO

Baikov, Chetyrkin 2006 Herzog et al 2017

- scale dependence decreases at higher orders
- choice $\mu < M_H$ more appropriate than $\mu = M_H$
- scale variation by factor 2 up and down often taken as estimate of higher-order corrections
 simple and easy to do
 but must not be over-interpreted

Quark masses

- lacktriangleright recall: $lpha_s$ and m_q depend on renormalisation scheme
 - standard in QCD: MS scheme \leadsto running $\alpha_s(\mu)$ and $m_q(\mu)$
 - for heavy quarks c,b,t can also use pole mass/on-shell scheme standard in QED for electron, muon, etc.

scheme transformation:

$$m_{\text{pole}} = m(\mu) \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(\frac{4}{3} - \log \frac{m^2(\mu)}{\mu^2} \right) + \mathcal{O}(\alpha_s^2) \right]$$

▶ MS masses from Review of Particle Properties 2024

$$m_u = 2.16(7) \text{ MeV}$$
 $m_d = 4.70(7) \text{ MeV}$ $m_s = 93.5(0.8) \text{ MeV}$ at $\mu = 2 \text{ GeV}$ $\overline{m}_c = 1.2730(46) \text{ GeV}$ $\overline{m}_b = 4.183(7) \text{ GeV}$ $\overline{m}_t = 162.5^{+2.1}_{-1.5} \text{ GeV}$ with $m_g(\mu = \overline{m}_g) = \overline{m}_g$

Summary of Part 1

- ▶ beyond all technicalities reflects physical idea: eliminate details of physics at scales ≫ scale Q of an observable
- ▶ running of $\alpha_s \rightsquigarrow$ characteristic features of QCD:

 - strong interactions at low scales → need other methods
 - introduces mass scale $\Lambda_{\rm QCD}$ into theory
- dependence of observable on μ governed by RGE reflects (and estimates) particular higher-order corrections ... but not all