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Introduction to Photon Science
Part I: Basics of synchrotrons 



A short history of X-ray 
sources
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Generation of X-rays: X-ray tube
From discovery to first application

1895: Discovery of X-rays by Wilhelm Conrad Röntgen

Wilhelm Conrad Röntgen
(1845 – 1923) 

Nobel Prize 1901

Crookes tube

“It seemed at first a 
new kind of invisible light. 
It was clearly something 

new, something 
unrecorded.”

e-

X-rays

General principle for generation
of X-rays: Bremsstrahlung
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Generation of X-rays: X-ray tube
From discovery to first application

1 month later: first X-ray image

e-

30-150 kV

Photographic plate

Röntgen’s wife hand

25 min exposure time 
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Generation of X-rays: X-ray tubes
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X-ray diffraction from crystalline structures

Max von Laue 
(1879 – 1960)

Nobel Prize 1914e-

First diffraction patterns obtained by Max von Laue in 1912
W. Friedrich et al. Annalen der Physik 346, 971–988 (1913)

ZnS crystal
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Generation of X-rays: X-ray tubes
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X-ray diffraction from crystalline structures

Rosalind Franklin 
(1920 – 1958)

Nobel Prize 19621952: The first X-ray diffraction pattern of DNA
62 hours exposure time !

The Nobel Prize in Physiology or Medicine 1962 was awarded jointly to 
Francis Harry Compton Crick, James Dewey Watson and Maurice Hugh Frederick 
Wilkins "for their discoveries concerning the molecular structure of nucleic 
acids and its significance for information transfer in living material"
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Generation of X-rays: Betatron
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Acceleration in a magnetic field

Scientific American, Vol. 168, No. 5 (MAY · 1943), pp. 207-209

X-rays
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Generation of X-rays : Synchrotron
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First observation of synchrotron radiation

April 24, 1947: First observation of SR at General Electric 70 MeV synchrotron
(Langmuir, Elder, Gurewitch, Charlton, Pollock)

 relativistic speed

late 1970s  planning began 
for special accelerators to 
generate synchrotron radiation
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Generation of X-rays : and now?
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Linac and 3rd generation synchrotron

few MeV radiotherapy linac ESRF (Grenoble, FR), 6 GeV synchrotron
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Big facilities for studying tiny objects…

| Introduction to Photon Science | Sadia Bari Courtesy European XFEL



Page 16

Synchrotron radiation facilities worldwide
More than 50 light sources

Free-electron lasers
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Source: https://lightsources.org/
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Synchrotron radiation facilities in Europe
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Source: https://lightsources.org/
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DESY machine history

DESY founded 1959 as an Electron Synchrotron Facility for Elementary Particle Research

3000 employees, 3000 international guests per year (from more than 40 nations)
(130 apprentices, 500 PhD students and postdocs)
Annual budget: 349 M€

1964 DESY (Synchrotron) e- 7.4 GeV
1974 DORIS (Storage Ring) 300m e+/e- 3.5 GeV (later 5 GeV)

1980 HASYLAB@DORIS
1984 Upgrade with 7 Wiggler/Undulator Beamlines
1993 Dedicated SR Source at 4.5 GeV

1978 PETRA (Storage Ring) 2.3km e+/e- 19 GeV

1990 HERA (Storage Ring) 6.3km p+/e- 920 GeV / 27.5 GeV (using PETRA as Booster)

1997 FLASH (Free-Electron Laser)
2005 Dedicated User Facility

2007 Shutdown of HERA and Reconstruction of PETRA  PETRA III

2009 PETRA III Dedicated SR Source at 6 GeV     (one of the most brilliant synchrotron sources worldwide)

2012 Shutdown of DORIS
2014 FLASH II (Extension of FLASH)

Participation in the European XFEL project (operation since 2017)
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Synchrotron
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Principal structures

1. e- are produced and
accelerated in a LINAC

2. e- are accelerated to nominal
energy (GeV) in the booster
accelerator

3. e- bunches travel in the
storage ring in a wide circular
path, emitting light as they
change directions

4. X-ray light, emitted towards
“beamlines”
 experiments

1

2

3

4

4

An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd edition, P. Willmott, 2019, Wiley
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Synchrotron at DESY

4 eV – 200 keV| Introduction to Photon Science | Sadia Bari
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Radiation by acceleration of a charged particle

An Introduction to Synchrotron Radiation: Techniques and Applications, 2nd edition, P. Willmott, 2019, Wiley

| Introduction to Photon Science | Sadia Bari



Page 23

Emission pattern for circular accelaration

Hertzian Dipole

 Every accelerated charge radiates electromagnetic waves

 Oscillatory motion: No radiation in direction of the
oscillation

 The maximum radiated power is observed perpendicular
to the oscillation direction
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β = 0.5

β = 0.9

Emission pattern for circular accelaration
Rest frame Laboratory frame

Lorentz transformation

Opening 
angle

Hertzian Dipole

𝟏𝟏
𝜸𝜸
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Insertion devices: Wigglers and Undulators
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Undulation motion

S

N

N S

Magnet poles

Electron beam

S N

Undulator period
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Synchrotron Radiation (SR) is a relativistic effect
γ the relativistic Lorentz factor

Many features can be understood in terms of two processes:
 Lorentz contraction
 Doppler shift
When a relativistic charged particle is travelling through a periodic magnetic field, in the particles rest frame 
it sees a magnetic field rushing towards it.
In our rest frame the magnet period is λu

γ =
𝑬𝑬
𝑬𝑬𝟎𝟎

β = 𝟏𝟏 −
𝟏𝟏
γ𝟐𝟐

β =
𝒗𝒗
𝒄𝒄

c is the velocity of light in free space
v is the velocity of the electron
β is the relative velocity of the electron
E is the electron energy 
E0 is the electron rest energy (0.511 MeV)

This γ factor turns up again and again in SR !
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Synchrotron Radiation (SR) is a relativistic effect
γ the relativistic Lorentz factor

Many features can be understood in terms of two processes:
 Lorentz contraction
 Doppler shift
When a relativistic charged particle is travelling through a periodic magnetic field, in the particles rest frame
it sees a magnetic field rushing towards it.
In our rest frame the magnet period is λu

γ =
𝑬𝑬
𝑬𝑬𝟎𝟎

β = 𝟏𝟏 −
𝟏𝟏
γ𝟐𝟐

β =
𝒗𝒗
𝒄𝒄

c is the velocity of light in free space
v is the velocity of the electron
β is the relative velocity of the electron
E is the electron energy 
E0 is the electron rest energy (0.511 MeV)

This γ factor turns up again and again in SR !

• What is γ at PETRA III ?
• What wavelength does the particle emit?
• What wavelength do we observe?
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Bending magnet
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 The radiation is emitted in 
the plane of the orbiting 
particles

 The radiation is linearly 
polarized in the orbit plane

Electron beam

Bending magnet

Radiation fan
slits
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Insertion devices: Wigglers and Undulators
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Undulation motion

 Multiplication of the radiation 
intensity by periodically 
repeated magnet structures

S

N

N S

Magnet poles

Electron beam

S N

Undulator period

Undulator strength parameter 𝐾𝐾 = 𝑒𝑒𝑒𝑒𝜆𝜆𝑢𝑢
2𝜋𝜋𝑚𝑚𝑒𝑒𝑐𝑐
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Insertion devices: Wigglers and Undulators
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𝐾𝐾 ≫ 1Wiggler regime:  α > 1/γ

𝐾𝐾 ≤ 1 Undulator regime: α < 1/γ

 In the undulator regime the radiation cones overlap and the wave trains can 
interfere constructively  increase of intensity

𝜆𝜆 ≈
𝜆𝜆𝑢𝑢

2𝛾𝛾2
1 +

𝐾𝐾2

2
and Δ𝜆𝜆

𝜆𝜆
≈ 1

𝑁𝑁
with N= # periods of undulator
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Insertion devices: Wigglers and Undulators

| Introduction to Photon Science | Sadia Bari

Intensity of the emitted radiation

Incoherent superposition

I ~ Ne Np

Partially coherent superposition

I ~ Ne Np2

Np = Number of magnet poles

Ne = Number of electrons/bunch

Wiggler

Undulator
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Radiation from the different insertion devices
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Photon intensities delivered by different insertion devices

An Introduction to Synchrotron 
Radiation: Techniques and 
Applications, 2nd edition, P. 
Willmott, 2019, Wiley
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Evolution of synchrotron radiation sources
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Smaller, brighter!

brilliance= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦𝜎𝜎𝑥𝑥′𝜎𝜎𝑦𝑦′ 𝐵𝐵𝐵𝐵

Photon flux = photons/s
𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦 = transverse area from which SR is emitted
𝜎𝜎𝑥𝑥′ ,𝜎𝜎𝑦𝑦′ = solid angle into which the SR is emitted
BW = bandwidth of the monochromator

Collimation

Source
size
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PETRA III @ DESY
Characteristic parameters

PETRA III machine parameters
Electron energy: 6 GeV
Circumference: 2304 m
Revolution time: 7.685 µs
Number of bunches: 960, 480, 40
Bunch separation: 8, 16, 192 ns
Bunch length: 13.2 mm, 44 ps
Total beam current: 100 mA (top-up mode)

Horizontal emittance: 1.2 nm rad
Vertical emittance: 0.012 nm rad

Bending magnet field: 0.873 T
Bending magnet radius: 22.92 m
Critical photon energy: 20.9 keV

Vertical aperture of vacuum chamber: 7 mm

44 ps

8 ns
192 ns

Time

In
te

ns
ity

PETRA III
960-bunch mode
40-bunch (timing) mode
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PETRA III

Applications
in physics,
chemistry,
biology,…
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PETRA III Facilities
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P01: Nuclear resonant and inelastic scattering
2.5 - 80 keV, Resolution 1 eV to 1 meV, sub-micron spatial resolution
P02.1: High-resolution powder diffraction
60 keV, Resolution 
P02.2: Microdiffraction under extreme conditions
25 - 60 keV, high pressure, high/low temperatures
P03: X-ray scattering with micro-/nano-focus
9 – 23 keV
P04: Variable polarization XUV-beamline
250 - 3000 eV High-resolution ion and photoelectron spectroscopy
P05: Imaging beamline
5- 50 keV

Phase- and absorption contrast imaging, tomography
P06: Hard X-ray micro/nanoprobe
5 - 21 keV

Visualization with micro- to nanometer resolution using X-ray fluorescence, absorption spectroscopy, diffraction
coherent diffraction imaging, ptychography

P07: High energy materials science
30 - 200 keV, Microfocus
P08: High resolution diffraction, small angle scattering, reflectivity
5 - 29 keV, Microfocus
P09: Resonant scattering and diffraction, XMCD
2.7 - 50 keV
P10: Coherence applications beamline
5 - 25 keV Photon correlation spectroscopy, coherent diffractive imaging of nanostructures, Rheo-SAXS
P11: Bio-Imaging and diffraction
5 - 30 keV, Micro/nanobeam, biological samples and microcrystals
P12: Small angle scattering at biological samples (proteins) in solution 
P13/P14: Macromolecular crystallography

Atomic and molecular science (P04)
Surface science (P01, P03, P08, P10)
Thin films, wetting phenomena, phase
transitions
Materials science (P01, P02, P04, P07, 
P09, )
Catalysis, magnetism, superconductivity, 
metallic glasses, batteries
Soft matter research (P01, P03, P08, P09, 
P10)
Colloids, glass transitions
Earth science (P01, P02, P08, P09)
High pressure research, geophysics, 
mineralogy, trace element analysis
Life science (P11, P12, P13, P14)
Protein structure, drug development
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