Reciprocal space. Part 2

O. M. Yefanov CFEL at DESY, Hamburg, Germany

To read

What we'll be talking about:

- Non-crystalline objects
- High resolution
- Ewald sphere (again 🕲)
- Single particle imaging
- Why crystals?
- Protein crystallography
- Pink and convergent beams
- Dynamical theory (multiple scattering)
- Processing lots of data

Again some basics

a, b, c - real lattice vectors

a*,b*,c* - reciprocal lattice

H – reciprocal lattice vector

 $\overline{\mathbf{H} = \mathbf{ha*} + \mathbf{kb*} + \mathbf{lc*}}$

h, k, l - Miller indexes

 λ – wavelength (~1Å)

 $|\mathbf{K} - \text{wavevector}, |\mathbf{K}| = 1/\lambda$

Q – scattering vector

Q = Kh - K0

H = Q - Bragg's law

Non-crystalline objects

Reciprocal space in 3D

Coherent X-ray Diffraction Imaging

Reciprocal space in 2D

Projection of the object

Fourier transform

Section through reciprocal space

Phase retrieval algorithm:

Phase retrieval algorithm:

Ptychography

From Wiki

3D crystalline sample

Reciprocal space for low Q

Reconstruction for low Q

Reciprocal space for high Q

Reconstruction for high Q

High vs low Q:

Reciprocal space Real space

Another example

Reciprocal space

Real space

Ewald sphere

Ewald sphere

Soft x-rays are difficult for high resolution

Ewald sphere, low energy

Reciprocal space in 3D

Diffraction in real space

Diffraction in reciprocal space

Ewald sphere

Elastic scattering: $|\mathbf{K}_f| = |\mathbf{K}_0| = 2\pi/\lambda$

Elastically scattered photons lie at the Ewald sphere

Ewald sphere "effects"

Electron Diffraction

500keV, L = 1570mm, D (vert) = 34mm, so L/D = 50!

Even for electrons Ewald sphere is not "flat"!

Single Particle Imaging (SPI)

Diffraction on a single virus

Diffraction on a single virus

Diffraction on a a drop of water

Miss the target

Diffraction on a single virus

Real experiment schematic

Single shot diffraction patterns

SPI, 3D merging

SPI, orientation refinement

Virus 2c6s (200k atoms), 27nm 12000 random oriented patterns Real space Reciprocal space

Why crystals?

Unit cells

GaAs

PS2

The choice of a unit cell

The choice of a unit cell

The choice of a unit cell

1 unit cell (CatB)

Ideal diffraction pattern

Again, why crystals?

1 unit cell (CatB)

Realistic diffraction pattern

1 unit cell (CatB)

Diffraction pattern

All simulations made with Moltrans

Unreal flux (1e20 photons)

2x2 unit cells (CatB)

Diffraction pattern

5x5 unit cells (CatB)

Diffraction pattern

Pattern of 1 unit cell (CatB)

Pattern of 5x5 unit cells

Bragg peaks intensities are modulated by the FFT of the UC

Measuring protein crystals

Typical "tomographic" measurement

Single crystal and serial crystallography

Single crystal

Unit cell vectors

Single crystal Serial

Measured patterns

Single crystal

Serial

An indexed pattern (CS-PAD detector)

hkl reflections in 3D

Diffractogram

https://www.epfl.ch/schools/sb/research/iphys/teaching/crystallography/diffractogram/

Pink and Convergent beams

Pink beam (Laue diffraction)

- 1e15 ph/sec
- Single 100ps bunch from sync. is enough
- 5% bandwidth
- New algorithms needed

Pink beam in reciprocal space

Partiality with pink beam

A.Tolstikova

Pink vs mono

Monochromatic beam

Pink beam

Indexing

Indexing

Indexing

Divergent beam in reciprocal space

Divergent beam in reciprocal space (3D)

Diffraction pattern with big divergence

Experimental diffraction pattern

Multiple scattering (dynamical diffraction theory)

Dynamical diffraction

 $\chi = \sum_{h} \chi_h \exp(2\pi i \vec{h} \cdot \vec{r}) \quad \vec{D}_h = \vec{E}_h + \sum_{h'} \chi_{h-h'} \vec{E}_{h'}$

 $\Delta_E=0$ Dispersion equation

2-beam case: $\vec{E}(\vec{r}) = \vec{E}_0 \exp(2\pi i \vec{k}_0 \cdot \vec{r}) + \vec{E}_h \exp(2\pi i \vec{k}_h \cdot \vec{r})$

 $rot\vec{H} = \frac{\partial \vec{D}}{\partial t}$

 $rot\vec{E} = -\frac{\partial B}{\partial t}$

 $div\vec{D} = 0$

 $div\vec{B} = 0$

 $\vec{D} = \varepsilon_0 \varepsilon \vec{E}$

 $\vec{B} = \mu_0 \mu H$

$$\vec{E}(\vec{r},t) = \vec{E}(\vec{r}) \exp(2\pi i \upsilon t)$$
 Boundary conditions
$$\Delta \vec{E} - \text{grad div } \vec{E} + 4\pi^2 K^2 (1+v) \vec{E} = 0$$

$$E_t = const$$

 $\frac{(k_h^2 - K^2)}{K^2} \vec{E}_h = \frac{(\vec{k}_h \cdot \vec{E}_h)\vec{k}_h}{K^2} + \sum_{g \neq h} \chi_{h-g} \vec{E}_g \qquad \sum_{i=1}^{h} [\vec{k}_h \times \vec{E}_h]_t = const.$

 $H_t = const$

 $B_n = const$

 $\sum (\vec{E}_h)_t = const$

 $\sum_{h} \left(\left(ec{E}_{h}
ight)_{\!\! n} + \sum_{h'} \chi_{h-h'} \left(ec{E}_{h'}
ight)_{\!\! n} \,
ight)$

 $(k_0^2 - (1 + \chi_0)K^2)(k_h^2 - (1 + \chi_0)K^2) = C^2K^4\chi_{\overline{h}}\chi_h$

 $\vec{k}_h = \vec{K}_0 + \vec{h} + K\varepsilon\vec{n}$

 $\varepsilon^4 + A_3 \varepsilon^3 + A_2 \varepsilon^2 + A_1 \varepsilon + A_0 = 0$

$$\Delta \vec{E} - grad \ div \ \vec{E} + 4\pi^2 K^2 (1+\chi) \vec{E} = 0$$

$$E_t = cons$$

$$\Delta \vec{E} - \operatorname{grad} \operatorname{div} \vec{E} + 4\pi^{2} K^{2} (1 + \chi) \vec{E} = 0$$

$$\vec{E}(\vec{r}) = \sum_{h} \vec{E}_{h} \exp(2\pi i \vec{k}_{h} \cdot \vec{r}) \quad \vec{H}_{h} = [\vec{k}_{h} \times \vec{E}_{h}]$$

$$E_{t} = \operatorname{const}$$

$$D_{n} = \operatorname{const}$$

$$H = \operatorname{const}$$

$$\Delta \vec{E} - grad \ div \ \vec{E} + 4\pi^2 K^2 (1+\chi) \vec{E} = 0$$

$$D = con$$

$$E(r,t) = E(r) \exp(2\pi t O t)$$

$$\Delta \vec{E} - \operatorname{grad} \operatorname{div} \vec{E} + 4\pi^2 K^2 (1+\chi) \vec{E} = 0$$

$$E(r,t) = E(r) \exp(2\pi t O t)$$

Processing "big" SX data

Data rates at modern sources

LCLS (<u>CS-PAD</u>):

- 4.6Mb * 120Hz * 3600sec * 10hours * 5days = 95Tb PINK beam at APS (JoungFrau 1M):
- 2Mb * 1000Hz * 3600sec * 20hours * 5days = 860Tb
- Modern synchrotron (<u>Eiger2 XE 16M</u>, compressed):
- 16Mb * 400Hz * 3600sec * 20hours * 5days = 2.1Pb eXFEL now (<u>AGIPD</u>):
- (2+2)Mb * 3520Hz * 3600sec * 10hours * 5days = 2.4Pb eXFEL soon (AGIPD 4M, 2023+):
- (8+8)Mb * 3520Hz * 3600sec * 10hours * 5days = 9.5Pb LCLS2 soon (<u>ePix10k-HR</u>, 2024+):
 - 8.4Mb * 10000Hz * 3600sec * 10hours * 5days = 14Pb

Data rate (LCLS)

Automated high volume image processing is essential (reliable background correction, automatic identification of useful data)

Online processing (Onda/OM)

Up to date information > Real-time human feedback Keep up with data flow (fresh)

Data that help us take immediate decisions

Accuracy is not a strong requirement. Low latency is!

Mariani et al., "OnDA: online data analysis and feedback for serial X-ray imaging", J. Appl. Cryst. (2016)

Offline data processing

Fast (C, Python?)
Parallelizable
Reliable
Adjustable
Tools to check results
User friendly
HDF5 compatible
Segmented detectors
AI is not always suitable

Maxwell cluster

INTEL, Gold-6140, 768G

INTEL, Gold-6240, 768G

AMD, EPYC, 7542, 512G

AMD, EPYC, 7542, 512G

INTEL, V4, E5-2640, GPU,

V100, GPUx1, 256G

INTEL, V4, E5-2640, GPU, P100,

GPUx1, 256G

-2698 v4 @ 0 2.20GHz d 6140 CPU @ 0 2.30GHz 0 2.30GHz

0

0

0

7000

4700

84 TFlops

INTEL, V4, E5-2698, 512G INTEL, Gold-6140, 768G 0 INTEL, Gold-6240, 768G 2.60GHz

Gold 6140 CPU @ 2 18 1844 768GB 0 Gold 6240 CPU @

0

0

0

1xGV100GL

1xGP100GL

18

Gold 6240 CPU @

2.60GHz

AMD EPYC 7542

AMD EPYC 7542

E5-2640 v4@

2.40GHz

E5-2640 v4 @

2.40GHz

5 different CPUs

72 2

1844

1740

1740

768

768

562 TFlops

991GB

512GB

512GB

256GB

256GB

215775GB

max-exfl099 upex-beamtime upex-middle exfel 80 upex all allrsv exrsv upex-beamtime upex-middle 72 max-exfl101 exfel upex all allrsv exrsv upex-beamtime upex-middle 72 max-exfl102 exfel upex all allrsv

2

2

2

2

2

max-exfl259

max-exfl260

max-exfl261

max-exfl360

maxexflg006

max-

exflg024

Total: 354

hosts

upex-high exrsv upex exfel allrsv all

upex-high exrsv upex exfel allrsv all

upex-beamtime exrsv upex-middle

upex exfel

upex-beamtime exrsv upex-middle

upex exfel allgpu upex-beamtime upex-middle

upex exfel

allgpu upex-beamtime upex-middle

exfel upex

CPU/GPU nodes: 336/18

72

128

128

40

40

31088

2

2

2

2

2

708

18

32

32

10

10

Data reduction

Thank you for attention!

