Exploring Quantum Materials with X-ray Spectroscopy, Part 2

Markus Scholz Hamburg, 4th August 2025

Photoemission ("ARPES") and metals

toutestquantique.fr

Momentum ("velocity") maps

Imaging of "exotic" electronic structures

Soft x-rays @ DESY (EuXFEL)

For nanoscopic & femtostroboscopic electronic structure imaging

ARPES at PETRA III, DESY

Hemispherical Analyzer

Experiment at LCLS-II, Stanford

Time-of-flight Analyzer

Angle-resolving hemispherical deflection analyzer

2D angle-energy imaging

Time-of-flight momentum microscope

3D momentum-energy imaging

Medjanik et al., Nat. Mater. 16, 615 (2017) Kotsugi et al., Rev. Sci. Instrum. 74, 2754 (2003) Tusche et al., Ultramicroscopy 159, 520 (2015)

 θ'

Soft x-ray time-of-flight momentum microscopy

4D momentum-energy imaging

Medjanik et al., Nat. Mater. 16, 615 (2017)

Advanced photoelectron spectroscopy

Probing nonequilibrium electronic structure at nanometer & femtosecond scales

In operando nano/micro-ARPES

Femto-stroboscopic momentum microscopy

Nguyen et al., Nature **572**, 220 (2019) Rotenberg & Bostwick, J. Synchrotron Rad. **21**, 1048 (2014)

© Jonathan Sobota (Stanford)

In operando ARPES

Electronic structure in devices under bias

Making a Electron and Molecular Movie

 $10^{-3} s$ milliseconds

"snapshot photography" E. Muybridge, 1878

 $10^{-18} s$ Attoseconds

Today. (Image taken from SLAC webpage)

DESY, Hamburg

New functionality at interfaces

What are the relevant time scales?

Band structure

Spin structure

Electron hopping

$$\tau_{\rm e} = \frac{h}{W} = \mathcal{O}\left(\frac{h}{1\,{\rm eV}}\right) = \mathcal{O}(4\,{\rm fs})$$

Exchange interaction

$$\tau_{\rm spin} = \frac{h}{J_{\rm ex}} = \mathcal{O}\left(\frac{h}{100\,{\rm meV}}\right) = \mathcal{O}(40\,{\rm fs})$$

STRUCTURE

Si(111) - 7×7 hω = 136 e\ Si 2p binding energy rel. Si 2p3/2 (eV)

Chemical structure Lattice structure

DYNAMICS

(Electrons at interfaces!)

Charge transfer

$$\tau_{\rm CT} = \mathcal{O}(\tau_{\rm e}) = \mathcal{O}(\tau_{\rm core}) = \mathcal{O}(4\,{\rm fs})$$

Lattice vibration

$$\tau_{\rm ph} = \frac{h}{E_{\rm ph}} = \mathcal{O}\left(\frac{h}{10\,{\rm meV}}\right) = \mathcal{O}(400\,{\rm fs})$$

FUNCTION

Catalysis

Pump-probe technique

toutestquantique.fr

Synchrotron and FELs at DESY and SLAC

Page 45

Time-resolved photoemission measurement:

- can offer the real-time study of the dynamics of the electronic state in condensed matter
- used in investigation of the binding energies, dispersion and lifetimes of the electronic state on clean metal surface

Why time-resolved? Observe and disentangle different processes

Timeline of thermalization and equilibration

Excitation at the surface and *ballistic electron motion*. Ballistic electron motion increases effective penetration depth of excitation.

(a) t=0by surface $v \sim 10^6 \text{ m/s}$ $v \sim 10^6 \text{ m/s}$ $v \sim 10^6 \text{ m/s}$

Electrons reform a hotter FDdistribution from e-e scattering, after a finite thermalization time, and begin diffusion into the bulk (b) $t = \tau_{th}$ $T_e > T_e$ $t = \tau_{th}$ $t = \tau_{th}$

On the ps timescale, electrons and phonons scatter, and equilibrate.
Standard heat diffusion thereafter.

Figure from: J. Hohlfeld et al, Chem Phys. (2000).

Page 51

DESY.

Timeline of thermalization and equilibration

DESY.

Two-temperature model

- We use the two-temperature model to calculate emittance growth due to ultrafast heating in Cu.
 - Electrons and lattice are treated as interacting thermalized subsystems

Electron thermal conduction $C_{e}(T_{e}) \frac{\partial}{\partial t} T_{e} = \underbrace{\frac{\partial}{\partial z} \left(K_{e}(T_{e}) \frac{\partial}{\partial z} T_{e} \right)}_{\mathcal{E}} + \underbrace{\left(T_{e} \right) \frac{\partial}{\partial z} T_{e}}_{\mathcal{E}} + \underbrace{\left(T_{$

Source term:
$$S(t, z) = \frac{(1 - R)F_0}{\sqrt{2\pi}\sigma_t d_p} \exp\left[-\frac{(t - t_0)^2}{2\sigma_t^2} \left(\frac{z}{d_p}\right)\right] \longrightarrow \text{Penetration depth}$$

Phenomenological,

but...

... it works!

Types of Charge-Density-Wave Insulators

From static properties to dynamic function

What are the relevant time scales?

Electrons (at
$$E_{\rm F}$$
): $v_{\rm e}=1.6\times 10^6\,{\rm m/s}$ \curvearrowright $\frac{a}{v_{\rm e}}=0.23\,{\rm fs}$

Atomic lattice:
$$v_{\rm s} \approx 3.6 \times 10^3 \, {\rm m/s}$$
 \curvearrowright $\frac{a}{v_{\rm s}} \approx 100 \, {\rm fs}$

$$1 \text{ fs} = 10^{-15} \text{ s} = 0.000\,000\,000\,000\,001 \text{ s} = \frac{0.3\,\mu\text{m}}{c}$$

Femtosecond electronic structure snapshots!

1-*T* TaS₂

A system with multiple "exotic" properties

DESY.

^[1] D. Shao et al., *Phys. Rev B.*, **94**, 125126, (2016)

^[2] I. Avigo et al., Appl. Sci., 9, 44, (2019)

What is a charge-density wave (CDW)?

1*T*-TaS₂

Charge-density modulation

Periodic lattice distortion

[1] D. Shao et al., *Phys. Rev B.*, **94**, 125126, (2016) DESY.

Mott insulation

1-*T* TaS₂

- Fulfill all criteria for conductors, i.e. should be metallic but experiments show an insulator
- Large CDW unit cell leads to flat bands
- Strong electron-electron interaction leads to localization of electrons
- Splitting into lower and upper Hubbard band

[1] S. Hellmann et al., *Nature Comm.*, **3**, 1069, (2012)

Charge-density wave

$$au_{
m e} = rac{h}{W} = \mathcal{O}\left(rac{h}{1\,{
m eV}}
ight) = \mathcal{O}(4\,{
m fs})$$

distortion

Periodic lattice distortion
$$au_{
m lat} = rac{h}{E_{
m A}} = \mathcal{O}\left(rac{h}{10\,{
m meV}}
ight) = \mathcal{O}(400\,{
m fs})$$

Energy gap
$$au_{\Delta} = rac{h}{2\Delta} = \mathcal{O}\left(rac{h}{200\,\mathrm{meV}}
ight) = \mathcal{O}(20\,\mathrm{fs})$$

FEL-based time-resolved conduction PES

 $h
u_{
m probe} =$ 82.8 eV $h
u_{
m pump} =$ 1.2 eV $T_{
m sample} <$ 100 K

Valence band dynamics in TaS₂

- Increase of intensity at M-points only after 0.17 ps
 => phonon driven process
- Loss of intensity at Γ-point right at t₀
 => electron driven process

FEL-based time-resolved conduction PES

Valence band dynamics in TaS₂

$h u_{ m probe} =$ 82.8 eV $h u_{ m pump} =$ 1.2 eV $T_{ m sample} <$ 100 K

- Increase of intensity at M-points only after 0.17 ps
 => phonon driven process
- Loss of intensity at Γ-point right at t₀
 => electron driven process

Methods: Time-Resolved Orbital Tomography

Easiest approach:

→ final state ≈ plane wave

$$I_i(\theta, \phi) \sim |\mathbf{A} \cdot \mathbf{k}|^2 (\widetilde{\psi_i}(\mathbf{k}))^2$$
 J.W. Gadzuk, PRB **10(12)**, 5030 (1974). P. Puschnig *et al.*, Science **326**, 702 (2009).

Fourier-Transform of the molecular orbital!

Charge-transfer & structural dynamics in CuPc/TiSe₂

Ultrafast multiplex electron cinema at a molecule/2D material interface

Molecules on 2D material

0.1 ML

0.9-1 ML

DESY.

Orbital tomography

" disentangle" molecular orbitals and substrate dynamics

Photoemission of Quantum Materials at SLAC/Stanford University

Optimum combination: LCLS-II + k-mic

Highest repetition rate of soft x-ray pulses + highest efficiency in photoelectron detection

- Several iterations of electron column
- Successful Commissioning P04@PETRA in 2022, 2023
- in-house and user beamtime at P04@PETRA and PG2@FLASH in

2022, 2023, 2024

novel momentum microscope:

- multimode lens and sparce-charge reduction
- machine learning for optimizing lens settings

early science cases: quantum materials, soft- and hard material interfaces, in situ/operando measurements of devices, ...

illing Lukas Bruckmeier

Jakob Dilling

Thank you

Markus Scholz DESY (FS-FLASH) Notkestr. 85 D-22607 Hamburg GERMANY

Tel.: +49 40 8998 4206 markus.scholz@desy.de