Updates on QCD modelling for the low- μ W-mass analysis

DESY SM group meeting

January 27, 2025

LAB, F. Dattola

Non-Perturbative QCD effects

TMD fits to Z - p_{T} and auxiliary Drell-Yan data

- Precisely constrain NP QCD effects already before m(W) fit
- NP effects related to intrinsic transverse momentum of partons can be described by TMD PDFs
- DYTurbo NP model characterised by
 - a **NP cutoff** (prescription for regularizing Landau pole of α_s running) $\rightarrow b_*^2 = b/(1 + b^2/b_{\lim}^2)$
 - a **NP Sudakov form factor** parametrising NP transverse modes in TMDs $\rightarrow S_{\rm NP}(b) = \exp\left[-g_j(b) g_K(b)\log\frac{m_{\ell\ell}^2}{Q_0^2}\right]$
- Several S_{NP} parameterisations implemented in DYTurbo
 - Current baseline model relies on Collins-Rogers parametrisation $\to S_{\rm NP}(b\,|\,g_1,q,\lambda,g_0,b_{\rm lim},Q_0)$
- ullet Extract and constrain g_0,g_1,q,λ by fitting Drell-Yan data to state-of-the-art DYTurbo predictions
 - Key advantage: can properly account for correlation between PDF and NP QCD uncertainties
 - Interfacing DYTurbo to xFitter allows simultaneous profiling

Non-Perturbative QCD effects

TMD fits to Z - p_{T} and auxiliary Drell-Yan data

- NP QCD dynamics expected to be universal \to Same NP model describing Drell-Yan, W^{\pm} , Z data
- TMD fits should include:
 - Data from ATLAS DY measurements
 - 8 TeV Z $p_{\rm T}$ data in y bins, fitted up to $p_{\rm T}^Z \le 29$ GeV: provide most stringent constraints on NP parameters
 - 13 TeV low-mass DY $p_{\rm T}(\mu\mu)$ data in M bins, fitted up to $p_{\rm T}^{\mu\mu} \leq 10$ GeV: expand NP sensitivity. (5 and 13 TeV W and Z $p_{\rm T}$ data measured at low μ will also be included as a cross-check)
 - But also data from fixed-target DY measurements: help to better constrain g_0
 - $p_{\rm T}(\mu\mu)$ data from Fermilab-E288: $p\,N({\rm Pt}) \to \mu^+\mu^-{\rm X}$ at $\sqrt{\rm s}$ = 19.4 / 23.8 / 27.4 GeV
 - $p_T(\mu\mu)$ data from Fermilab-E605: $pN(Cu) \rightarrow \mu^+\mu^- X$ at \sqrt{s} = 38.8 GeV
 - $p_{\rm T}(\mu\mu)$ data from Fermilab-E772: $pd \to \mu^+\mu^- X$ at \sqrt{s} = 38.8 GeV
 - And data from Tevatron: help to constrain valence PDFs at high-x, no HF-initiated processes
 - Z- $p_{\rm T}$ data from CDF at 1.96 TeV, $p_{\rm T}$ bins of 0.5 GeV fitted up to $p_{\rm T}^Z \leq 30$ GeV: sensitive to g_1 through the position of the Sudakov peak.

Non-Perturbative QCD effects

TMD fits to Z - p_{T} and auxiliary Drell-Yan data

• (Preliminary) fit results:

- $g_0 = 0.508 \pm 0.053 \text{ GeV}^2$
- $g_1 = 0.612 \pm 0.039 \text{ GeV}^2$
- $\lambda = 2.501 \pm 0.416 \text{ GeV}^2$
- $q = 0.003 \pm 0.001 \text{ GeV}^4$

- In the pipeline: **TODOs**
 - Extract full correlation of NP QCD effects → simultaneous profiling of PDF and TMD uncertainties
 - Assess NP QCD systematic uncertainties:
 - Repeat fit with predictions based on other available aN3LO PDF sets, i.e. NNPDFan3lo
 - Test alternative NP models, e.g. SCETLIB model, and effects induced by variations of $b_{\rm lim},~Q_0$

Modelling of heavy-flavour contributions

TODOs: theoretical uncertainties induced by quark flavour models

- Evaluate effects due to charm and bottom quark masses and thresholds with alternative fits
 - Baseline fit is performed with backward fixed-flavour PDF evolution
 → repeat fit using variable-flavour number (VFN) scheme forward evolution
 - Fit with variable-flavour number for the running of α_s in the Sudakov form factor
 - Fit with independent variations of charm and bottom PDF matching scales, μ_c and μ_c \rightarrow control modelling uncertainties in the region of the heavy-quark thresholds
- Assess impact of modelling variations related to HFs on the sensitive W/Z $p_{\rm T}$ ratio

