Higgs for POF-V ATLAS data analysis plans

Katharina Behr, Sarah Heim, Judith Katzy, Kerstin Tackmann, Klaus Moenig

The Higgs boson as a probe

- Key questions in particle physics:
 - How do particles get their mass SM Higgs mechanism or something else?
 - Measure the Higgs boson couplings as precisely as possible, in particular to 2nd generation fermions
 - Search for additional Higgs boson (see Federico M.'s/Katharina B's slides)
 - What is the structure of the vacuum?
 - Constrain the Higgs boson self-coupling through Single- Di- and Tri-Higgs boson production
 - What is dark matter?
 - Search for Higgs to dark matter decays (see Federico M's slides)
 - Why is there a matter-antimatter asymmetry in the universe
 - Search for CP violation in the Higgs sector

Higgs couplings

How do particles get their mass?

- Have we found the Standard Model Higgs (mechanism) or something else?
- Higgs couplings known to 6-12% for bosons and third generation fermions, while many models predict %-level deviations from SM
- Run3 data expected to **triple** available dataset, and combination ATLAS+CMS gives another **factor of 2**

Total

Theory

 κ_{ν}

 $\kappa_{W} \equiv$

κ₇ =

 $\kappa_{a} \equiv$

 K_{+}

κ_h

 κ_{μ}

 $\kappa_{\tau} \models$

0.02

0.04

0.06

0.08

0.1

Expected uncertainty

0.12

Statistical

Experimental

- Perform couplings measurements and combined analyses (including ATLAS+CMS)
- Of particular interest: couplings to second generation fermions. Contribute to the discovery potential for H->cc in ttH topologies
- Enhance sensitivity to BSM with differential measurements

Top associated Higgs production (ttH+tH)

* Measure ttH and tH production in various Higgs decay channels with the LHC data set for 2027-32: full Run 3 data plus start of Run 4:

- increase precision on the measurements from Run2 in particular those that are statistically limited
- enhance sensitivity towards observation of tH production
- The highly complex event signatures triggers *
 - development of object performance in flavour tagging and boosted \succ topologies
 - development of new Machine Learning methods to optimally explore the \succ data

∻

 \succ

 \succ

 \succ

 \succ

Di-Higgs

- Constraining the Higgs self-coupling is one of the primary physics goals of HL-LHC
- This is the best way to get access to the Higgs potential
- Perform measurements in channels with expertise on object performance using the new data set:
- Select channels that optimally span the full m_{HH} range
 - bbbb
 - Expertise on flavour and boosted Xbb tagging
 - Connections with tracking activities
 - bbyy
 - Profit from egamma (photon) experience
 - Connections with work on H->yy
 - Combinations
 - ATLAS and ATLAS+CMS legacy combinations

General interest to measure tri-Higgs production if person power can be found