Higgs properties and fundamental interactions at high precision

P(

Belle II

Ami Rostomyan Hamburg, 12 February 2025 The origin of mass, the flavour puzzle, and the imbalance between matter and anti-matter

MATTER AND THE UNIVERSE

Higgs boson Top and B physics Charge-parity violation Lepton flavour universality

Except β, all other measurements cannot be done at LHCb

HELMHOLTZ POF V - Belle II | Ami Rostomyan | 19.6.2025

Belle II

Belle II collected 575 fb^{-1} data, as much as the first generation B-factories

Slower than expected data accumulation at SuperKEKB

Achieved a new world record peak luminosity

 $5.1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ on December 27, 2024

Target luminosity: $6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$

To achieve the ambitious Belle II program higher luminosity is required

- To reach instantaneous luminosities beyond $2 \times 10^{35} cm^{-2} s^{-1}$ a redesign of IP and new vertex detector is planned
- For next POF period projections: $5 10ab^{-1}$

NTERNAL

Rare decays: b - > svv

Based on Snowmass studies for $B^+ \rightarrow K^+ \nu \nu$:

- $5ab^{-1}$ is sufficient to establish the process (assuming SM)
- 50ab⁻¹ is needed to match SM theory accuracy
- Complement $B^+ \to K^+ \nu \nu$ with $B \to K^0_S \nu \nu, K^{*0} \nu \nu, K^{*+} \nu \nu$

Inclusive $\mathbf{B} \to \mathbf{X}_{s\gamma}$ Decays

Rare decay: $\mathscr{B}(B \to X_s \gamma) = (3.49 \pm 0.19) \times 10^{-4}$

- Flavour changing neutral current (FCNC) \bullet
 - Suppressed in the SM \Rightarrow Enhanced sensitivity to new physics
- In addition to the branching fraction, what is interesting to measure?
 - Decay rate and *CP* asymmetries sensitive probes of BSM physics via electroweak penguin loop
 - Shape of photon energy spectrum sensitive to m_h
 - Relates to inclusive measurements of $|V_{ub}|$ \bullet

$$\Gamma_P = \frac{\Gamma(\bar{B} \to X_s \gamma) - \Gamma(B \to X_s \gamma)}{\Gamma(\bar{B} \to X_s \gamma) + \Gamma(B \to X_s \gamma)} \qquad \Delta_{0-} = \frac{\Gamma}{\Gamma}$$

	n	÷	rtainty		Baseline (impro
ίĐ	$0 \vee V \sim \Gamma(D^{-})$	$\langle V \rangle$	b^{-1}	$50 \ {\rm ab}^{-1}$	syst. uncertair
(D	$\rightarrow \Lambda_{S}\gamma$) - I (D	$\rightarrow \Lambda_{S}\gamma$	'%	2.2%	10.3% $(5.2%$
ក	$0 \rightarrow V \rightarrow \Gamma (D -$	V v)	5%	2.1%	8.5% $(4.2%)$
(B)	$\rightarrow X_S \gamma + \Gamma (B)$	$\rightarrow X_S \gamma$	2%	2.0%	6.5%~(3.2%)
		0.01094690.020	3%	1.7%	3.7%~(1.8%)

CKM precision measurement

β : from decay-time-dependent *CP* analyses of $B \rightarrow J/\psi K^0$ decays

- With 5/ab of data, statistical precision on beta is expected to be competitive with LHCb with 50/fb of data
- Both LHCb and Belle II analyses will be systematics-limited and will require improvement
 - PXD fundamental in controlling resolution function systematics

 α : from analysis of $B \to \rho \rho, B \to \pi \pi, B \to \rho \pi$ decays

- α is the least well known CKM angle so far
- Belle II will lead the precision
- $V_{\mu s}$: exclusive and inclusive from τ decays
- The value of $V_{\mu s}$ from τ decays high (Cabibbo angle anomaly)
- As a τ factory, Belle II is uniquely placed to address this issue

200

#events 100

50

0.5

0.0

-0.5

-10

-5

asym

∆t [ps]

10

Lepton flavour universality with τ -lepton decays

The τ mass, lifetime and $\mathscr{B}(\tau \to \ell \nu_{\ell} \nu_{\tau})$

The most precise T mass measurement so far from Belle II

 $m_{\tau} = 1777.09 \pm 0.14 \text{ MeV/c}^2$

- Ongoing studies show that further reduction of systematic uncertainty is possible
- Ongoing studies show a significant improvement in the τ lifetime and leptonic branching fraction precisions
 - PXD is pivotal for the lifetime measurement
 - The absolute branching fractions $\mathscr{B}(\tau \to e \nu_{\rho} \nu_{\tau})$ and ullet $\mathscr{B}(\tau \to \mu \nu_{\mu} \nu_{\tau})$ have not been measured at B-factories

T mass. lifetime, BR

 τ_{τ} [fs]

Test of lepton flavour universality in τ decays

The coupling of leptons to W bosons is flavour-independent

- Most precise test from π decays
- Followed by t decays \bullet
 - Belle II has the most precise single measurement in τ deca •

$\tau - e$ universality

An order of magnitude more precise measurements from t decays (BaBar) than from W decays

$\tau - \mu$ universality

 τ/μ decays have the best precision

HELMHOLTZ POF V - Belle II | Ami Rostomyan | 19.6.2025

Belle II prospects:

- Require measurements of absolute branching \bullet fractions: $\tau \rightarrow e, \mu, \pi, K$
- Initial studies show promising results for \bullet hadronic and leptonic branching fraction measurements

Summary

Belle II provides unique sensitivity to NP couplings to the 3rd generation

The origin of mass, the flavour puzzle, and the imbalance between matter and anti-matter

- Higgs boson \bullet
- Top, bottom, τ physics
- Charge-parity violation \bullet
- Lepton flavour universality 🧹

