Lattice @ DESY the next decade

Stefan Schaefer

June 19th 2025

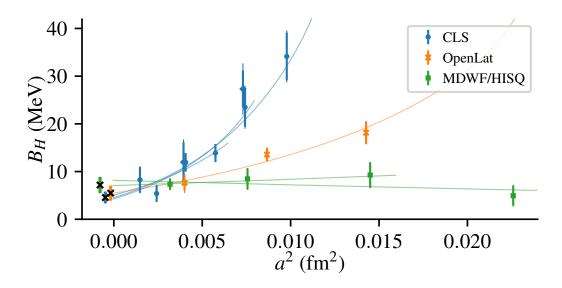
HELMHOLTZ

Physics

Hadrons and Nuclei

Nuclear physics from QCD

- Basis of nuclear physics two-nucleon and three-nucleon interactions
- Ingredients for exotic **neutron star structure** dibaryons and hyperon interaction
- external probes on two-nucleon systems
 - EMC effect
 - neutrino-nucleus interactions → important for DUNE
 - neutrinoless double beta decay
 - \rightarrow QCD input important in case of detection


Glueballs

- What happens to glueballs in the presense of quarks?
- help searches at BESIII, LHCb, GlueX, ...

B physics

. . .

Leptonic and semileptonic decays → Belle II

Green et al., Phys. Rev. Lett. 127 (2021) 242003, Green, arXiv:2502.15546

MeV scale effects in systems with mass of several GeV → New era of precision

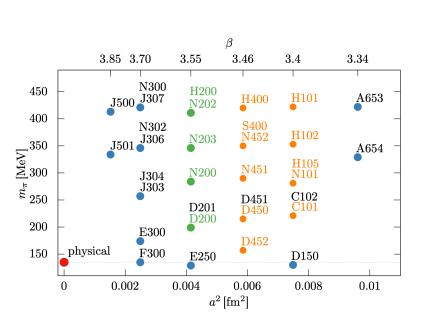
Community support

Organization

Long tradition in supporting the German and international lattice community

Leadership in large simulation efforts

In the past: ALPHA, CLS, ETMC, QCDSF collaborations organized by DESY scientists


Future: new CLS simulations (~50 scientists + students in Europe) Better discrete action \rightarrow smaller discretization effects Better algorithms Better planning \rightarrow less CO₂ emission

Simulation software and algorithms

Computer architectures are changing

Massively parallel machines based on GPUs → Need new software and algorithms

Make computations more efficient and sustainable.

>cls

Community support

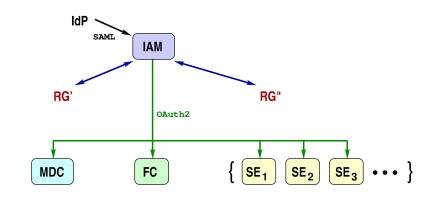
International lattice data grid

Sharing and management of large datasets of gauge field configurations.

Reuse of data and underlying computation \rightarrow sustainability

Implementation of FAIR data principles.

Flexible and modern middleware


- metadata catalogue with freely configurable schema
- support of embargo periods (fine-grained access control with WLCGcompliant token profile)
- distributed architecture with modular building blocks simple
- containerized deployment (catalogues now also used in Japan and UK)

Use cases beyond lattice QCD?

- Radio-Astronomy
- Small and medium-size HEP experiments

Relevant for POF-V

- Operation of services
- Curation (and proper publishing) of data

Summary

Lattice computations provide input to on-going experimental efforts

- B physics
- Nuclear physics \rightarrow interaction with nuclei
- Glueballs

Lattice QCD requires significant resources.

Make it more sustainable by

- Good planning of simulations
- Efficient software and algorithms
- Sharing and re-using data

Data management: Synergies with experiment?