

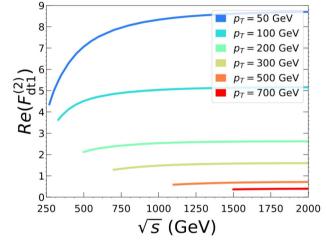
KIT theory plans for PoF V

Felix Kahlhoefer PoF V MU-FPF Retreat, 20 June 2025

Quick comment: Funding sources

- Theoretical particle physics at KIT funded by
 - MU-FPF: Felix Kahlhoefer, Monika Blanke + postdoc positions
 - MU-MRU: Thomas Schwetz + group
 - University: Biekötter, Gieseke, Heinrich, Melnikov, Mühlleitner, Nierste, Steinhauser
 + postdoc positions and PhD students
- Experimental particle physics at KIT (CMS, Belle II) funded by university
- Experimental astroparticle physics at KIT (KATRIN, ...) funded by MU-MRU



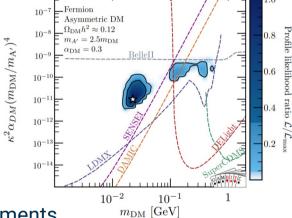

PoF V: Precision physics

Main objectives: Provide the theory predictions needed to determine the properties of the Higgs boson and test the Standard Model with unprecedented precision

- Precision predictions for LHC and flavour experiments
 - Higher-order corrections for Higgs production
 - Fundamental structure of QCD
 - New physics in flavour observables
- New research directions:
 - Advanced computational methods and machine learning
 - Effective field theories (for SMEFT and light BSM)
 - Precision at future colliders

Impact: World-leading research of essential importance for the success of ongoing experiments

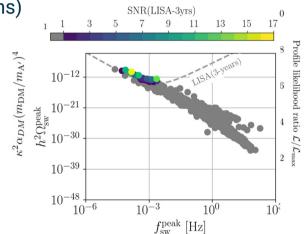
Beyond Standard Model physics


Main objectives: Provide new-physics models for and interpretation of experiments

- Extended Higgs sectors
 - LHC searches
 - Connections to phase transitions and baryogenesis
- Dark matter phenomenology
 - Dark matter at colliders
 - Low-threshold direct detection experiments (DELight)
 - Reinterpretation and global fits

- Production and decay modes of GeV-scale particles (ALPs, dark photons etc.)
- Models and benchmarks for SHiP, FASER, NA64 (and maybe LUXE-NPOD)

Impact: Develop optimal strategy to maximize the chance of a ground-breaking discovery



Particle-cosmology connection

Main objectives: Explore implications of dark sector models for astrophysics and cosmology

- Dark sector gravitational waves from phase transitions
 - Computational tools (TransitionListener, BSMPT, lattice simulations)
 - Interpretation of NANOGrav and benchmarks for LISA
- Dark matter nightmare scenario
 - Dark matter evolution beyond thermal equilibrium
 - Astrophysical constraints on dark matter self-interactions
 - Bounds from BBN, spectral distortions, Ly-α forest, 21cm
- Machine-learning applications
 - Neural network emulators for cosmic ray propagation
 - Simulation-based inference for dark matter models

Impact: Build bridges between communities to share and combine complementary information

- Theory group at KIT works closely with experiments and observers to provide precision predictions, models of BSM physics and interpretation of results
- Crucial input for HL-LHC (ATLAS, CMS, LHCb), Belle II and SHiP
- World-leading expertise and visibility in Higgs physics, flavour and dark matter
- New directions: Machine learning, long-lived particles, gravitational waves
- Many links to MU-FPF@DESY and MU-MRU
- Central goal: Facilitate discoveries in upcoming experiments

