

Theory plans (DESY): phenomenology

Georg Weiglein, DESY & UHH DESY, 06 / 2025

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Higgs physics

Most of the open questions of particle physics are directly related to Higgs physics and in particular to the Higgs potential

Particular focus in PoF V:

Higgs pair (triple) production, Higgs self-couplings, precision predictions, new signatures, guidance for searches, model building, model distinction,

Higgs potential: the "holy grail" of particle physics

Crucial questions related to electroweak (EW) symmetry breaking: what is the form of the Higgs potential and how does it arise?

Trilinear coupling Quartic coupling Possible couplings involving additional scalars $V = 1/2 m_h^2 h^2 + v \lambda_{hhh} h^3 + \lambda_{hhhh} h^4 + ... + v \lambda_{hhH} h^2 H + v \lambda_{HHH} H^3 + ...$ _∧ V(φ) Known so far: EW vacuum (h: detected Higgs at 125 GeV) Distance of EW minimum Deeper minimum from origin of field space: v Curvature of the potential Deeper minimum around the EW minimum: mh [K. Radchenko '24] Absolute minimum Ti

Vacuum stability: possible tunnelling into deeper minima of the Higgs potential

⇒ Most dangerous minimum (MDM) often differs from the global minimum and also from the one that is closest in field space

Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025

Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025

Probing additional sources of CP violation; strong CP problem

Machine Learning for CP sensitivity at the LHC and future colliders

Global fits of Electric Dipole Moments in Effective Field Theories as complementary CP information

CP-mixing and interference effects in BSM Higgs searches

Applications of new ideas on generalised/non-invertible symmetries to address open puzzles of the SM, in particular the hierarchy problem and the strong CP problem

. . .

Probing the electroweak phase transition with the ``smoking gun'' signature $pp \rightarrow A \rightarrow ZH \rightarrow Ztt$

Gravitational waves as a probe of the early universe

Figure 3: Model-independent probes of a short kination era in the

Relation between trilinear Higgs coupling and strong first-order EWPT with potentially observable GW signal

 \Rightarrow Region with strong first-order EWPT and potentially detectable GW signal is correlated with significant deviation of \varkappa_{λ} from SM value

Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025

Precision physics of the ew and strong interactions

Quantitative understanding of QCD is vital for interpretation of data at the LHC and future colliders, often presents a limiting factor for physics impact of measurements

Goals:

 push precision of predictions by developing new methods and concepts; extend predictions to new processes / observables

- more systematic understanding and treatment of theoretical uncertainties
- develop systematic frameworks for improving and quantifying precision of predictions

- implement developed methods into public tools for the high-energy community; focus on accuracy of results and efficient use of computing resources

Examples:

theory uncertainties: concept of nuisance parameters; apply factorisation formulae to new processes/observables, include sub-leading effects; concepts/methods: parton shower algorithms; tools: event generators, evolution and manipulation of PDFs Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025

10

QCD + electroweak contributions

LHC physics: multi-boson physics with polarisation, NLO QCD+EW corr. For BSM models (extended Higgs models, SMEFT etc.), off-shell ttbar + X, $pp \rightarrow bblvlv + \{A, AA, Z, H, ...\}$ etc., Top threshold effects

MC generators: NNLO EW in collinear and soft subtraction, matching to showers, development for the tt threshold scan (NLO EW, NNLO QCD threshold matching, matching to soft gluon shower etc.), GPU offloading and ML for phase-space sampling (cross-link to SciComp and MT-DMA)

Electroweak physics at highest energies (MuC, FCC-hh etc.): electroweak factorisation, EW PDFs, matching to EW showers and fragmentation

Physics at photon colliders and physics program at LUXE (pheno + simulation tools)

NLO EW calculations/simulations for Higgs physics / BSM models at e+e- colliders (FCC-ee, LCF, etc.)

Example: $e^+e^- \rightarrow tt$, projection for future matching

Future matching of NNLO QCD contribution in the continuum and NNLL tt threshold resummation:

12 Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025 Effective Field Theory: classification of physical impacts of dimension-8 operators on EW and Higgs measurements; theoretical constraints from unitarity and causality (swampland and positivity); small instanton effects on axion and axion-like particle interactions with SM degrees of freedom

Future colliders: demonstrate the potential of precision EW and Higgs measurements to probe new physics at high energy as well as at low coupling. The study will combine effective field theory analyses and model-specific studies for instance in the context of grand-unification scenarios. Probing the dark sector

Collider signatures of dark sectors

Dark matter production mechanisms

Constraining new physics with cosmological probes such as BBN and CMB

Dark matter spikes around black holes

Primordial black holes

Signatures and models of self-interacting dark matter

Novel experimental probes for ultralight dark matter

14

Using quantum sensors to search for (ultra)light DM

[see talk by S. Worm]

15

Simple SM extension: ultralight scalar ϕ ightarrow DM candidate

Ultralight $(m_{\phi} \leq 10 \,\text{eV}) \rightarrow \text{DM}$ as classical, coherently oscillating field $\phi(t) \approx \phi_0 \cos(m_{\phi} t)$

ightarrow induces **oscillations** of $lpha_{
m em}$ and fermion masses

→ oscillations of electron levels in atoms and ions: testable by frequency ratios of (atomic) clocks

Close interaction between experiment and theory!

Conclusions

Precise predictions, theory input for enhancing the sensitivity of experimental analyses to BSM effects and to the discrimination between different realisations of the underlying physics

Exploit and improve machine-learning methods, make use of new mathematical / theoretical developments

Interplay between collider physics, the evolution of the early universe and the physics of gravitational waves

Close interaction between experiment and theory, build on successful track record of common publications and joint projects

Triple Higgs production: HL-LHC vs. lepton colliders

HL-LHC is comparable to 1 TeV lepton collider for $\varkappa_{\lambda} \approx 1$ Higher-energetic lepton colliders have better sensitivity

Theory plans: phenomenology, Georg Weiglein, PoF V MU-FPF Retreat, DESY, 06 / 2025

18

Particle Cosmology @ DESY

Géraldine SERVANT DESY/U.Hamburg

PoF V MU-FPF Retreat, June 20 2025

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Permanent Staff

Konstandin

Ringwald's replacement

+ two 5-year junior staff

+ recent new associate with UHH

Team strongly embedded into the Quantum Universe cluster

Higgs cosmology.

- -Non standard Higgs thermal histories
- -Higgs & inflation
- -Electroweak phase transition
- -Electroweak baryogenesis

- -Cosmological solutions to the hierarchy problem
- -Higgs partners cosmology

Axion cosmology & axion dark matter

- -Early cosmology of the Peccei-Quinn sector
- -Axion dark matter production mechanism
- -Gravitational signatures of axion dark matter
- -Late cosmology of ultra-light dark matter

- -Signatures of axion spectator during inflation
- -Axion-Higgs cosmological interplay

Primordial gravitational waves

-LISA Science

-Next-to-LISA space mission

-Einstein Telescope Science

Reading the cosmological history in the GW frequency spectrum.

Ultra-high-frequency primordial GW

String Theory and Mathematical Physics

String Theory and Mathematical Physics

Scientific Goals

<u>Main Theme</u>: Study of <u>Quantum Field Theory</u>, i.p. Gauge Theories, deep in the (non-perturbative, strongly coupled) quantum regime.

- Explore space of QFTs; focus on fixed points of renormalization group
- Establish new paradigms for QFT i.p. through exactly solvable models
- Compute novel (non-local) observables at zero and <u>finite temperature</u>.

Through holography obtain new tools to study quantum gravity and in particular the quantum physics of black holes.

Mostly Fundamental Interactions a bit dark universe

String Theory and Mathematical Physics

The Center for Mathematical Physics (ZMP)

15 Pls, ~ 60 ECRs

ZMP grew into world-class center for Mathematical Physics a unique facility in Germany

CRC 1624 HIGHER STRUCTURES, MODULI SPACES AND INTEGRABILITY

Integrability

Higher Structures

- Explore space of QFTs; focus on fixed points of renormalization group
 Moduli Spaces
- Establish new paradigms for QFT i.p. through exactly solvable models
- Compute novel (non-local) observables at zero and finite temperature.

String Theory and Mathematical Physics

Maintaining the unique Center

As a founding member of ZMP, DESY's contributions remain key to success

- Funds about 50% of the research within physics side of ZMP
- Crucial for the embedding of ZMP into physics program

e.g. Quantum Universe

During the expected runtime of the SFB 1624 (2024-2036) two of the DESY funded PIs (Schomerus, Teschner^{*}) need replacement in order to maintain a critical physics contribution/link. Also one PI at UHH (Arutyunov)

The Wolfgang Pauli Centre

Interdisciplinary centre for theoretical physics

The Wolfgang Pauli Centre for Theoretical Physics

Developments during PoF IV

2017 First concept paper

2018-2020 Comprehensive strategy paper by UHH/DESY → WPC strategy paper 2020 High level scientific evaluation of the WPC strategy → WPC evaluation report 2022 UHH and DESY sign cooperation agreement Construction costs explode after Russian invasion

2023 Decision to rent space in Notkestrasse (Doppel H)

2024-2025 Planning for refurbishment of new location

Next steps WPC building

Concept paper for WPC building

Summary

We propose the construction of a new building for the Wolfgang Pauli Centre (WPC) of Theoretical Physics on the Campus Bahrenfeld that will host the DESY Theory Group, and the two Institutes for Theoretical Physics of Hamburg University. A common building offers significant potential for new synergies. These could be further supported through state-of-the-art meeting facilities, discussion spaces, an open student area, and offices for faculty of partner facilities as well as a visitor center with an innovative concept. With such a common hub for the wide range of theoretical Physics research on the Campus Bahrenfeld, the WPC would be the leading Institute for Theoretical Physics in Germany and one of the outstanding institutions worldwide, with important benefits for research, training significant physics in Spaces.

The Wolfgang Pauli Centre

WPC in Doppel-H

~ 4600 m2 to be rented and refurbished for the needs of WPC (co-working, meeting facilities..)

According to current optimal timeline, building could be fully operational in 2029.

Given issues with current office spaces on campus and promises made for PoF IV it seems crucial that plans for WPC in current form are realized w/o delay

The Wolfgang Pauli Centre

New Scientific Measures

Research hostel can host up to 6 new YIGs

extends fellow program to senior postdocs - transition to faculty positions

New thematic visitor program with ~20 visitors

Once fully operational requires ~ 400 K Euro/year about 50 % is funded from DESY and UHH(QU)

WPC is designed as a facility for interaction across divisions, photon science & astrophysics.

Theoretical Physics Symposium 2025

14 – 16 May 2025 DESY Hamburg, Germany Auditorium CSSB (bldg. 15)

The aim of this year's symposium is to expose the preeminent 'Unsolved Problems in the Theory of Quantum Systems' and to discuss emergent novel ideas for their solution. By bringing together leading experts from a wide range of research areas in quantum theory, such as particle and astroparticle physics, condensed matter physics, and cold atoms, we want to foster a stimulating and truly cross-disciplinary dialogue.

Confirmed Speakers

Asimina Arvanitaki (Perimeter Inst.) Alejandra Castro (U of Cambridge) Clàudia Climent (U de Barcelona) Eugene Demler (ETH Zurich) Antoine Georges (CdF, Paris & Flatiron Inst.) Stefanie Gräfe (FSU Jena) Chris H. Greene (Purdue U) Mikhail Katsnelson (Radboud U Nijmegen) Henning Kirchberg (Chalmers U) Zohar Komargodski (SCGP, Stony Brook) Markus Luty (U of California, Davis) Andrew Millis (Columbia U & Flatiron Inst.) Shaul Mukamel (U of California, Irvine) Hirosi Ooguri (Caltech & Kavli IPMU, Tokyo) Julio Parra-Martinez (IHES, Bures-sur-Yvette) Markus Reiher (ETH Zürich) Slava Rychkov (IHES, Bures-sur-Yvette) Morgane Vacher (Nantes U) Andreas Weiler (Tech. U Munich)

Organizing Committee

Christophe Grojean, Nina Rohringer, Robin Santra, Volker Schomerus, Jörg Teschner, Michael Thorwart, Tim Wehling

"I fully endorse the WPC's visionary proposal and I am convinced that the WPC will become an internationally-recognized center of scientific excellence and a source of inspiration for the physics community and the public alike."

Gian Giudice, Head of the Theoretical Physics Department, CERN

"The WPC is well conceived and is truly impressive in its scope and broad vision. [....] Hamburg is an ideal place for this center thanks to the well-established activity in multiple institutions in all five pillars, and to the proximity of unique experimental capabilities at DESY and the European XFEL." Shaul Mukhamel, University of California, Irvine, USA

"I wholeheartedly endorse this exciting proposal to expand and enhance the WPC.[...] I can well imagine that this initiative will raise the WPC to become Germany's leading institute for theoretical physics and a recognized leader on the world stage." *Robert Myers, Director, Perimeter Institute, Waterloo, Canada*

"I express my strong support for the WPC effort, and I see potential for a unique interdisciplinary environment for theoretical physics to develop, based on existing strengths in Hamburg."

Peter Zoller, Research Director, University of Innsbruck, Austria

"Hamburg has a long tradition as a power house in theoretical physics. Now WPC brings not only the local talents together but also conducts thematic programs that bring in international leaders. In addition, it maintains proximity to experimental activities. The proposal makes perfect sense, and WPC is poised to become a formidable foe of all the other centers around the world." *Hitoshi Murayama, University of California, Berkeley, USA*