# Future Collider Experiments



**MU-FPF POF5 Retreat** 

June 20, 2025

Felix Sefkow DESY



## **Strategic Considerations**

In 10 Minutes

Timelines

#### **German Community**

**DESY Competences** 

#### Punchline

## **FCC Timeline as an Example**



#### 20 years to develop, prototype, build and install detectors

- not all in the last moment
- LHC experience teaches us: time to start
- next phase already includes CERN contribution to detector concepts

# Timelines are uncertain and tend to slip

 earlier milestones and decisions less affected than end dates

## **Timeline for the FCCee**

![](_page_3_Figure_1.jpeg)

## **Timeline for the FCCee**

![](_page_4_Figure_1.jpeg)

## **Timeline for the FCCee**

![](_page_5_Figure_1.jpeg)

### **FCC-ee Detector Concepts**

#### CLD

![](_page_6_Figure_2.jpeg)

- Well established design
  - ILC  $\rightarrow$  CLIC detector  $\rightarrow$  CLD
- Full Si VXD + tracker
- CALICE-like calorimetry very high granularity
- Coil outside calorimetry, muon system
- Possible detector optimizations
  - Improved  $\sigma_p/p$ ,  $\sigma_E/E$
  - PID: precise timing and RICH

arXiv:1911.12230

![](_page_6_Figure_12.jpeg)

**IDEA** 

- Design developed specifically for FCC-ee and CEPC
- Si VXD; ultra-light drift chamber with powerful PID
- Crystal ECAL w. dual readout
- Compact, light coil;
- Dual readout fibre calorimeter
- Muon system

https://doi.org/10.48550/arXiv.2502.21223

#### Allegro

![](_page_6_Figure_21.jpeg)

- Still in early design phase
- Design centred around High granularity **Noble Liquid ECAL** 
  - Pb+LAr (or denser W+LKr)
- Si VXD
- Tracker: Drift chamber, straws, or Si
- Steel-scintillator HCAL
- Coil outside ECAL in same cryostat
- Muon system

Eur.Phys.J.Plus 136 (2021) 10, 1066, arXiv:2109.00391

![](_page_6_Figure_31.jpeg)

- Designed originally for operation at the ILC
- Together with SiD, ancestor of CLD.
- Main difference and signature element:
  - Large-volume time projection chamber (TPC)

The International Linear Collider Technical Design Report - Volume 4: Detectors arXiv:1306.6329

#### **Any Future Higgs Factory Detector Concepts**

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

- Well established design
  - ILC  $\rightarrow$  CLIC detector  $\rightarrow$  CLD
- Full Si VXD + tracker
- CALICE-like calorimetry very high granularity
- Coil outside calorimetry, muon system
- Possible detector optimizations
  - Improved  $\sigma_p/p$ ,  $\sigma_E/E$
  - PID: precise timing and RICH

arXiv:1911.12230

![](_page_7_Figure_12.jpeg)

**IDEA** 

- Design developed specifically for FCC-ee and CEPC
- Si VXD; ultra-light drift chamber with powerful PID
- Crystal ECAL w. dual readout
- Compact, light coil;
- Dual readout fibre calorimeter
- Muon system

https://doi.org/10.48550/arXiv.2502.21223

#### Allegro

![](_page_7_Figure_21.jpeg)

- Still in early design phase
- Design centred around High granularity **Noble Liquid ECAL** 
  - Pb+LAr (or denser W+LKr)
- Si VXD
- Tracker: Drift chamber, straws, or Si
- Steel-scintillator HCAL
- Coil outside ECAL in same cryostat
- Muon system

Eur.Phys.J.Plus 136 (2021) 10, 1066, arXiv:2109.00391

![](_page_7_Figure_31.jpeg)

- Designed originally for operation at the ILC
- Together with SiD, ancestor of CLD.
- Main difference and signature element:
  - Large-volume time projection chamber (TPC)

The International Linear Collider Technical Design Report - Volume 4: Detectors arXiv:1306.6329

# **German Community and DESY**

#### Survey in 2024

# Main interest in silicon detectors (vertex and large area) and calorimetry

- best way to position oneself in future projects is success in ongoing ones
- DESY and German universities well aligned
- DESY technology focus also includes advanced electronics & mechanics
  - see detector platform view

#### Interest in several detector concepts

• CLD/ILD, ALLEGRO

See also submitted **Expressions of Interest** (concepts and sub-detectors)

#### https://indico.cern.ch/event/1529896/

![](_page_8_Figure_11.jpeg)

![](_page_8_Figure_12.jpeg)

## **DESY Key Competences in Detector Concepts**

25 years of experience in leading and supporting physics and detector efforts worldwide

#### **DESY** strengths

- strong links with **theory**; phenomenology and generator competences
- **physics** case studies as key to strategic contributions
- physics driven detector optimisation
- software frameworks, sub-detector s/w integration and high-level reconstruction; Machine Learning in simulation & reconstruction
  - key to community integration
  - see computing platform view
- detector integration including MDI
- detector engineering and test beam support

#### Lifetime competences

- detector understanding  $\rightarrow$  methods development  $\rightarrow$  physics leadership

![](_page_9_Figure_13.jpeg)

### **Punchline**

# Maintain and evolve DESY's position as a German hub for future collider activities

• in sync with momentum growth in the community

#### **Capitalise on DESY strengths in**

- physics and link to theory
- overall detector concepts and optimisation
- software frameworks and integration
- detector technology competences and infrastructure

# Develop leading role of DESY and German institutes in CERN's future flagship project