
Authentication and Authorization

ILDG Middleware Working Group

July, 2025

1 / 27

Overview

1. IAM and Single Sign-On

2. Access Control

3. Tokens

2 / 27

Identity and Access Management (IAM) / Single Sign-On (SSO)

☛ identity information provided by trusted Identity Provider (IdP, e.g. home institution)
transported via SAML or OIDC token (or X.509 certificate)

☛ additional user attributes provided by IAM (acting also as Attribute Service)
e.g. VO membership, group membership, roles and/or permissions
transported via access (or ID) tokens (or VOMS proxy certificate)

3 / 27

AARC Blueprint Architecture

AARC-G0045→ AARC-G0080 4 / 27

https://aarc-community.org/guidelines/aarc-g045
https://aarc-community.org/guidelines/aarc-g080

Mutual Trust Relation 1: IdP ↔ IAM

• IdP (and user) needs to trust IAM before releasing attributes (=personal data)

• ILDG (IAM, services) needs to trust identity vetting of IdP

➜ Federations of IdPs/CAs which
can guarantee a well-defined
Level of Assurance (LoA)

• CA: IGTF

• IdP: eduGAIN

AARC Acceptable Authentication Assurance Policy

5 / 27

https://www.igtf.net
https://technical.edugain.org/
https://docs.google.com/document/d/1BBJYzSCIGlDrV32w-6vNuSdojIlQMf3ObhsYVgG3P6Q

Mutual Trust Relation 2: IAM ↔ SP/RS

Service Providers (SP) / Resource Servers (RS = MDC, FC, SE, . . .) used by ILDG

❐ require (the possibility to) reliably identify users (authentication)
e.g. for access to expensive resources

• storage (even for public read-only access!)
• fast (!) network connections

❐ enforcement of access restrictions / permissions (authorization)
must be trusted by resource owners (= you!)

❐ decision of access policies
should be controlled by the resource owners

6 / 27

(Attribute-Based) Access Control Model

Challenge: Huge many-to-many relation (for each action: R, W, . . .)
between users and resources (files, metadata, . . .)

{ action } × { user } × { resource } −→ { true, false } ←
u
se
rs

resources→
•
•

• • •
•
• •



❒ Attributes of

• subject (user)
• action (R/W)
• object ([meta]data)
• context

❒ Policy Enforcement Points → distributed Resource Servers (RS = MDC, FC, SE)

❒ Policy Decision Point → ???

7 / 27

Identity-Based Access Control

❒ Attribute: user identity

❒ Policy decision point = Policy enforcement point

user −→←− resource

RS

❒ Problem:

✘ GDPR
✘ Consistency / synchronization of policies on each RS
✘ Size

←
u
se
rs

resources→
•
•

• • •
•
• •



8 / 27

Group-Based Access Control

❒ Attribute: group membership

❒ Policy decision point = Policy enforcement point

user −→←− group −→←− resource

IAM RS

❒ Problem:

✔ GDPR
✘ Consistency / synchronization of policies on each RS
✘ Size?

←
u
se
rs

groups
•
•

•
•

• •


resources→[
• • •
• •

]

9 / 27

Capability-Based Access Control

❒ Attributes: capabilities assigned to user (e.g. “scope” claim of token)
explicit or implicit “Access Control Attributes” of resources

❒ Policy enforcement points → distributed Resource Servers (RS)

❒ Policy decision point → central Access Control Service (ACS)

❒ Break-up of huge user-resource relation into smaller many-to-many relations

user −→←− group −→←− capability −→←− resource

IAM IAM (aud, scope) RS
or ACS or ACS

☛ Closely following WLCG specifications

10 / 27

https://zenodo.org/record/3460258

Access Control Service (ACS)

❒ 3rd “catalogue” for administrative metadata

• hierarchical delegation (admin → project → groups/users)
• optional group management (GDPR concerns!)

❒ ACS beside/behind of IAM or in front of IAM

☛ Setup of ILDG is in certain aspects ahead of (and interesting for) other communities

11 / 27

Representation of “claims” by JSON Web Tokens (JWT)

A JWT consists of several parts (base64 encoded, separated by “.”), e.g. rfc7519

❒ cryptographic info

❒ payload = claim set (= JSON object made of name-value pairs)

❒ cryptographic signature (offline and online verification)

echo $BEARER TOKEN | cut -d . -f 2 | base64 -d | jq .

Registered claim names:

iss (Issuer)

sub (Subject)

aud (Audience)

exp (Expiration Time)

iat (Issued At)

jti (JWT ID)

Other (public/private) claim names:

• scope (authorization info)

• wlcg.groups (identity attributes)

• . . .

12 / 27

Use-cases of Tokens

❒ OpenID Connect: Identity layer on top of OAuth2 protocol OIDC Core 1.0

Roles:

• OpenID Provider (OP)
• Relying Party (RP)

ID-Token

• format: always JWT
• claim: “user has been authenticated”

❒ OAuth2: Authorization framework rfc6749

Roles:

• Resource Owner
• Resource Server
• Client
• Authorization Server

Access-Token, Refresh-Token

• format: string, possibly JWT
• claim: “app has been authorized”
(expressed through claim name scope)

13 / 27

Authorization Grants: Code Flow

(1) A registered client requests token and receives code from IAM
(2) Resource owner authenticates to IAM and approves request
(3) Client presents code and receives token from IAM

Two variants of code flow:

• Device Code (client runs on a device without browser) rfc8628
• Authorization Code (using redirect URL) rfc6749

Other authorization flows:

• Refresh Token
• Token Exchange rfc8693
• . . .

14 / 27

Scopes used in ILDG

storage.stage:/⟨path⟩ ⇒ storage.read:/⟨path⟩
storage.modify:/⟨path⟩ ⇒ storage.create:/⟨path⟩
metadata.write:/⟨path⟩ ⇒ metadata.read:/⟨path⟩

Path matching: [WLCG Common JWT Profiles 1.0]

Access to a resource with associated path (Access Control Attribute)
is allowed or denied depending on ⟨path⟩ parameter of scope in token.

e.g. SURL = https://dcache.somewhere.net:2880/a/b /c/d

OAuth2 token:

↓
scope (capability) access

storage.read:/ permit
storage.read:/c permit
storage.read:/c/d permit
storage.read:/x deny
storage.read:/c/y deny

15 / 27

https://zenodo.org/record/3460258

Mechanisms to control Scopes in IAM

❒ Client configuration IAM documentation

• system scopes (enabled by admin if restricted, or by user)
• custom scopes (enabled by owner, unless interfering with a system scope)

❒ Scope policies IAM documentation

• deny (by default)
• permit to specific groups (users)

Current IAM setup (will change):

• rely on scope policies
• use dedicated client(s) for which protected (custom) scopes are enabled by admin
→ disadvantage: shared client “secret”, no path hierarchy for custom scopes

16 / 27

https://indigo-iam.github.io/v/v1.12.0/docs/reference/api/oidc-client-management/
https://indigo-iam.github.io/v/v1.12.0/docs/reference/api/scope-policy-api/

Identifiers and Access Control

Access Control Attribute is

• in SE identical to path (after baseURL)

• in FC derived from SURL (baseURL/baseACA)

• in MDC derived from XML (markovChainURI)

☛ Well chosen hierarchy of identifiers can simplify/complicate handling of embargo situations!

1 policy 4 policies

17 / 27

Client Registration and Configuration in IAM

❒ Main:
• name (irrelevant)
• redirect URLs (e.g. for oidc-agent)

❒ Credentials:
• authentication method (HTTP basic)
• client secret

❒ Scopes
• system (only by admin if protected)
• custom (unless in conflict with system scope)

❒ Grant types
• authorization code
• device code
• refresh token

❒ [Owners]

18 / 27

Get (access) token by manual Device-Code Flow

(D1) client requests device code and displays user code (curl)
(error if any requested scope is not enabled for client)

(D2) authenticated user approves request (browser)
(not neccessarily owner of client)

(D3) client presents code and receives access token (curl)
(scopes are silently removed if denied)

PRO:

• No further configuration steps or setup needed (see script try-token)

CON:

• No handling of refresh tokens (possible, but requires security precaution)
• Uses shared client (no customization by normal user)

19 / 27

Step (D1)

Request:

curl -s -X POST -d client id=$CI -d "scope=$OPT S" $URL1

• CI = client ID

• OPT S = space-separated list of requested scopes

• URL1 = https://iam-ildg.cloud.cnaf.infn.it/devicecode

Response: JSON object with members

• device code

• verification uri

• user code

• . . .

20 / 27

Step (D3)

Request:

curl -s -X POST -u $CI:$CS
-d grant type=urn:ietf:params:oauth:grant-type:device code

-d device code=$DC -d audience=$AUD -d "scope=$OPT S" $URL2

• CS = client secret
• DC = device code from (D1)
• AUD = optional audience claim
• URL2 = https://iam-ildg.cloud.cnaf.infn.it/token

Response: JSON object with members
• access token

• id token (if openid enabled and requested)
• refresh token (if offline access enabled and requested)
• . . .

21 / 27

Using oidc-agent

Provides book-keeping and encrypted storage of refresh tokens and client credentials
• store client credentials and configuration as “account” ⟨name⟩

oidc-gen ⟨name⟩ --client-id=1d636a1d-2f8a-41b4-83b6-058ab080af61

--client-secret=$CLIENT SECRET --scope="$OPT S"

--iss=https://iam-ildg.cloud.cnaf.infn.it/

• show account details

oidc-gen -p ⟨name⟩

• activate specific account

oidc-add ⟨name⟩

• use cached access token or renew through refresh token

oidc-token ⟨name⟩ [-s ⟨scope⟩]
22 / 27

Using Tokens

❒ Display token

echo ⟨token⟩
| awk -F . ’A=$2; while(length(A)%4) A=A "="; print A’

| base64 -d | jq .

❒ Use token with curl

curl -H "Authorization: Bearer ⟨token⟩" ...

❒ Use token with gfal

export BEARER TOKEN=⟨token⟩
gfal-...

23 / 27

Summary

❐ INDIGO IAM developed and hosted by INFN-CNAF serves multiple purposes
• IdP federation through eduGAIN
• user and group mangement
• enforcement of AUP and VO policy
• token issuer
• client registration
• (access-)policy engine
• missing support for hierarchical delegation can be handled by ACS

❐ Complete transition to tokens has enabled fine-grained access control
• central policy decision point
• capability-based and GDPR compliant
• exploiting advanced features of standard specifications and of IAM
• ahead of other communities

Many thanks to IAM developers and support team at INFN-CNAF
and to Basavaraja BS (now CTAO)

24 / 27

	IAM and Single Sign-On
	Access Control
	Tokens

