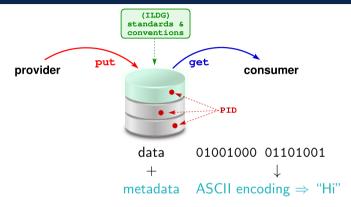
ILDG Services and Middleware


Hands-on Workshop

July 8, 2025

Overview

- 1. Middleware
- 2. Distributed Web Services
- 3. Basic ILDG Services
- 4. Interacting with ILDG Services

Naive (Meta-) Data Sharing

- (Meta-)data objects must have persistant (globally) unique identifier(s) F1, A1
- Many kinds of metadata (MD): format, content, provenance, access policies, ...
- Standards and (community-specific) conventions A1, R1.3

FAIR data: a local implementation

Logical organization as a database:

each FAIR data object becomes entry (row) in a database (table) with 3 fields (columns)

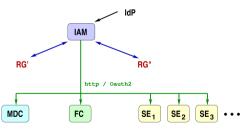
 \longrightarrow ID metadata data

- → retrievable by ID (A1) and searchable by metadata (F4)
- mint persistent identifiers (ID)
- define appropriate metadata schema and storage format
- possibly implemented just through a local POSIX file system
 - i.e. buy a big disk and use standard tools: ls, grep, find, $|\mathcal{Q}|$, ...
- additional access control mechanisms are required for "sharing" of data

N.B.: Technically, ILDG could be implemented by a single central infrastructure

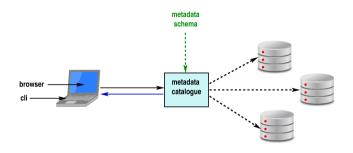
FAIR data: a distributed implementation

For large data objects or volumes: need to split (physical) storage of metadata and data



ID data

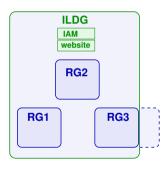
→ distributed implementation: typically by distinct web services (not pages):


- Authentication and Authorization (AAI)
- Metadata Catalogue (MDC)
- File Catalogue (FC)
- Storage Elements (SE)

where

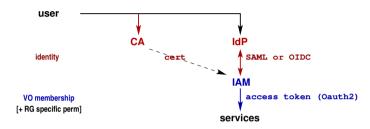
- separate MDC and SE becomes mandatory for large data objects (cost of search)
- multiple SE may become mandatory in practice (replication, funding, ownership)
- FC becomes mandatory if there are multiple SE or varying storage locations (SURL)

Distributed Interoperable Web Services


Not (just) web pages!

- grid (or cloud) storage elements (SE)
- central Metadata Catalogue(s) (MDC)

Global Services and Organization of ILDG


ILDG operates only 2 global services:

- User registration (IAM)
 - registry of ILDG users (groups and policies)
 - used for authentication to regional services
- ☐ **Web page** (under re-construction)
 - specification of standards and conventions
 - URLs of services of each regional grid
 - VO Policy
 - working groups and board

User Registration / Identity and Access (IAM)

Now: (ILDG 2.0)

- identity = OIDC token or SAML from trusted IdPs (e.g. home institutions in eduGAIN)
- membersip = IAM (Identity and Access Management) hosted at CNAF/INFN
- transport = access token (1 h)
- optional use of certificate only for convenient login

Currently 70 ILDG members with 30 different IdPs registered in IAM

ILDG Web Page

Under (re-)construction, also URL may move

- Policies
 - AUP: SPs \leftrightarrow users
 - VO Policy: users ↔ users
- Specifications:
 - metadata schema
 - file formats
 - URLs of services (Services.xml)
- Working groups and Board
- (Incomplete) user documentation

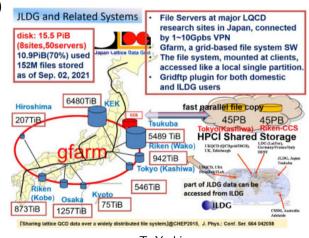
https://hpc.desy.de/ildg

Autonomous Regional Grids

Services operated by each Regional Grid

- Metadata Catalog (MDC)
- File Catalog (FC)
- Storage Elements (SE)
- Website with RG-specific information

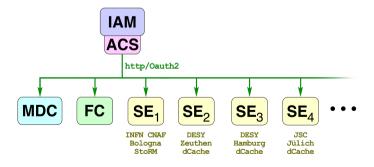
Regional Grids: CSSM, JLDG, LDG, UKQCD, USQCD


- are implemented with different architectures and technologies
- · operate in an autonomous way with individual policies

Examples

- JLDG (Japan): single SE, no specific access control
- LDG (Europe): multiple SEs, fine-grained access control

JLDG Architecture


- Single federated storage system (GFARM)
- JLDG-internal write access
- Fast read access (gridftp) available for VO members
- Transition to token-based authentication in progress
- Prototype setup for data publishing and DOI minting
- Tightly organized as a Regional Grid

T. Yoshie

LDG Architecture

- Multiple SEs (4 at this moment)
- Use of WLCG; Partly "piggy-backing" on WLCG infrastructure
- Fine-grained access control via ACS

Metadata Catalogue (MDC)

Key purpose: ID regisration and metadata search

 $\mathsf{ID} \longleftrightarrow \mathsf{metadata}$

Basic operations

* Search: query \rightarrow list of IDs (supporting powerful Xpath queries)

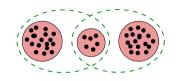
* Retrieve: ID \rightarrow MD (QCDml schema)

• Validate, insert, update, delete, ...

Database schema

	metadata collection				
	config	ensemble	publication		
primary key	LFN (dataLFN)	MCU (markovChainURI)	DOI		
attributes	QCDml tree	QCDml tree	t.b.d.		
	MCU	license	list of MCU		
			DataCite metadata		

F4


A1

ILDG Identifiers

Ensembles: markovChainURI

$$mc://\langle rg \rangle/\langle collab \rangle/\langle proj \rangle/...$$

• Configurations: dataLFN (no need of file extension) $1fn: //\langle rg \rangle / \langle collab \rangle / \langle proj \rangle / \dots$

ID	entity	relation	content	data storage	access control
lfn	config	mc	yes	yes	no
	\downarrow				↑
mc	ensemble	_	yes	no	yes
	$\uparrow\uparrow\uparrow$				
$DOI^{*)}$	publication	set of mc	yes	no	

*) ILDG 2.0 has no registration of IDs (DOI) or metadata for publications yet!

File Catalogue (FC)

Provides: functional (many-to-one) relation

 $\mathsf{FC} : \mathsf{SURL} \longrightarrow \mathsf{LFN}$

Basic operations

- * list entries (SURL) by LFN
- list by other criteria (SURL, Access Control Attributes)
- insert, update, delete, . . .

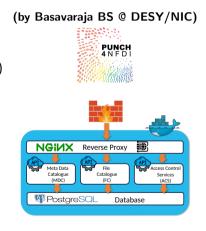
Database schema

primary key: SURL (Storage URL)

attributes: LFN

MCU (or other optional Access Control Attributes)

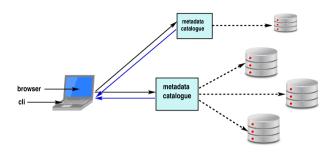
15 / 24


Δ1

New Implementation of MDC and FC

Technical details

- configurable, e.g. for additional collections (beyond ensembles and configs)
- additional attribute service for access control (ACS)
- REST API (see online documentation MDC, FC, and ACS)
- simple deployment (Docker containers, Kubernetes in preparation)
 - e.g. for other regional grids or applications currently JLDG, UK, and LDG (2 instances)


	MDC	FC	SE	
JLDG	~	~	1	gfarm access in progress
LDG	~	~	4	
UK	~	~	-	no legacy data

Optional add-on Services

- Markup GUI
- □ Query GUI (parametric in XSD)
- ☐ Metadata harvesting (OAI-PMH)
- ☐ File Transfer Service (FTS) with web monitor
- Fine-grained access control
- Monitoring
- Publishing

Interaction with ILDG Services

- Catalogues of all regional grids are interoperable due to standardized API
- \square High-level user operations may need several (≤ 10) low-level requests (e.g. HTTP) but still few compared to other web pages (implicitly handled by your browser)
 - www.google.com: O(25) requests
 - www.github.com: O(100) requests (try Ctrl-Shift-I in firefox)
 - your favourite airline: O(200) requests

Use Cases and "Itools"

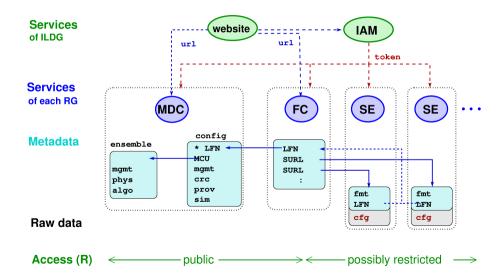
Consumer (collaboration internal)

- lfind: search in metadata catalog
- lget: download data and metadata

Consumer (community wide)

- optionally also use common search engines
- cite DOIs when using published data

Provider (collaboration internal)


- lpack: generate markup*) and pack data
- linit: register ensemble metadata
- lput: upload config data and metadata

Provider (community wide)

- optionally register DOI and generate landing page
- drop access restriction flag
- → benefit from data citations
 - *) trivial if information is already collected during production!

Interplay between ILDG Services

Examples of Interactions with ILDG Services

upload binary

☐ "Single Sign-On" (SSO) to ILDG • authenticate with your IdP (or certificate) \longleftrightarrow IAM, IdP request group memberships $\longleftrightarrow \mathsf{IAM}$ authorize tokens (configure clients) $\longleftrightarrow IAM$ "Get" config data (for specific and known LFN) optionally download config (and ensemble) metadata \longleftrightarrow MDC determine SURL list. \longleftrightarrow FC get token $\longleftrightarrow IAM$ download data \longleftrightarrow SF "Put" config data (for existing ensemble) decide SE and agree SURL ←→ RG admin get token $\longleftrightarrow \mathsf{IAM}$ upload config metadata \longleftrightarrow MDC register SURL \longleftrightarrow FC

 \longleftrightarrow SE

21 / 24

Consistency of ILDG Data

- ☐ ILDG is logically a distributed relational database with 2 kinds of entities
 - configs: metadata + (binary) data
 - ensembles: metadata

and corresponding primary keys

- LFN (dataLFN): lfn://rg/collaboration/project/name
- MCU (markovChainURI): mc://rg/collaboration/project
- Persistence and globally unique identifiers needs to be guaranteed by data providers.
- ☐ Typical inconsistencies (RDB anomalies) may arise from
 - failures of individual services
 - incorrect use of low-level tools

and can only be

- detected and fixed by regular scans (with possibly prohibitive cost)
- checked and handled by high-level tools (including roll-back)

Hands-on Exercises

Please keep in mind:

- you are using a prototype system, some components of which have been re-activated or newly developed only during the last months
- currently we do not (yet/any more) have user-friendly "Itools", but only quick and dirty scripts for low-level operations:
 - try-mdc, try-fc, try-se (just wrapper scripts for curl)
 - lime-ls, lime-unpack, lime-pack1
 - ildg-cksum, ildg-binary
 - ... you all can improve them and contribute to develop proper user tools!

Hands-on Exercises (cont.)

- Optional SW packages are installed in the workshop image (docker + apptainer) which you can running according to the instructions.
 In particular, the container includes
 - curl other utilities
 - gfal commands (Grid File Access Library)
 - oidc-agent (documentation)
- ☐ Additional material is on gitlab
 - exercise instructions
 - scripts for low-level testing (try-*)
- ☐ Ready to get hands on? (and fingers dirty!)