Sci1Cat
Data-Out, PID

Results, Jan 2025

Igor Khokhriakov aka Ingvord

QUIZ

What result do you expect?

250

200

Average Latency (ms)

50

Average Latency VS Number of Records in the DB (C10, R1000)

With index db.Dataset.createlndex({ pid: 1},{ unique: true })

1K

10K

100K
Number of Records (Adjusted Scale)

METHODOLOGY

Testing Tool:

e The benchmarking was conducted using wrk, a modern HTTP benchmarking tool capable of generating significant load with
multithreading and connection options.

Test Scenarios:

e Multiple configurations were tested by varying:
o Dataset size: 1K, 10K, 100K and 1M records.
o Request rate: R10, R100, and R1000 requests per second.
o Concurrent connections: 50 and 100 connections.

Endpoints:
e The REST API endpoint /datasets/fullquery was tested with query parameters to simulate real-world search patterns.
Metrics Collected:

e Latency: Average, standard deviation, and percentiles (50th, 75th, 90th, 99th).
e Throughput: Achieved requests per second and total requests processed.
e Reliability: Number of socket errors (timeouts, connection issues).

1_000 Records, 10 Clients, Rate {10..1000}

Avg 50th %ile 99th %ile
Configuration Latency Latency Latency Requests/sec Timeouts
R1000 9.83ms 4.78ms 163.97ms 1000.01 -
R100 12.06ms 10.81ms 30.91ms 100.05 -
R10 12.64ms 11.93ms 29.22ms 10.05 =

Conclusions

e With 1K records, the system is highly efficient at all request rates, even at R1000, where it maintains
excellent performance.

e Limiting clients to 10 (-¢c10) ensures stable performance without significant latency spikes, even under high
throughput.

e Compared to 10K and 100K records, 1K datasets show minimal impact from increasing request rates,
indicating the backend can efficiently handle smaller datasets at scale.

10_000 Records, 10 Clients, Rate {10..1000}

Avg 50th %ile 99th %ile
Configuration Latency Latency Latency Requests/sec Timeouts
R1000 51.23ms 7.22ms 1.13s 999.73 -
R100 20.12ms 15.59ms 179.33ms 100.02 -
R10 16.80ms 16.42ms 36.13ms 10.06 -

Conclusions

Limiting clients to 10 results in significantly improved system performance at all load levels.

Unlike 100K records, where R1000 introduced substantial latency spikes, 10K records show no major
degradation even at R1000.

The system scales well with 10K records, achieving the target request rate with low latency.

For real-world usage, keeping concurrency controlled (e.g., -c10) can prevent unnecessary queuing delays
and improve stability.

100_000 Records, 10 Clients, Rate {10..1000}

Avg 50th %ile 99th %ile
Configuration Latency Latency Latency Requests/sec Timeouts
R1000 4.36s5 2.91s 23.84s 971.41 -
R100 93.13ms 12.64ms 2.59s 98.53 -
R10 23.06ms 13.51ms 241.54ms 10.02 -

Conclusions

Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with
high average and 99th percentile latencies.

e Compared to previous high concurrency tests, reducing client count has a major positive impact on
performance.

1_000_000 Records, 10 Clients, Rate {10..1000}

Avg 50th %ile
Configuration Latency Latency
R1000 127.60ms 6.82ms
R100 14.49ms 11.60ms
R10 17.87ms 15.08ms

Conclusions

99th %ile
Latency

2.08s
74.30ms

148.48ms

Requests/sec
997.52
100.06

10.02

Timeouts

Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with

high average and 99th percentile latencies.

e Compared to previous high concurrency tests, reducing client count has a major positive impact on

performance.

Combined Results Tableview

OLAP Cube - Read Performance Summary (Updated)

Number of Records

a5l 1K

2 10K
3 100K
4 1M

50th Percentile Latenc 50th Percentile Latenc 50th Percentile Latenc 99th Percentile Latenc 99th Percentile Latenc 99th Percentile Latenc Requests/sec (R10)

13.51 15.59 4.78 241.54 179.33 163.97 10.39
16.42 10.81 6.82 36.13 30.91 2080.0 10.02
11.93 11.6 2910.0 29.22 743 23840.0 10.05
15.08 12.64 7.22 148.48 2590.0 1130.0 10.02

Requests/sec (R100)

100.02

100.05

100.06

98.53

Requests/sec (R1000)

1000.01

997.52

971.41

999.73

CONCLUSIONS 10

System scales well under high request rates, with 1K, 10K, 100K, and 1M records maintaining low latency
at R1000.

100K records initially showed a performance spike, but this was due to system overload (100% RAM and
swap usage)—when properly tested, it performed reasonably well.

Limiting concurrency (-c10) significantly improves stability, reducing queuing effects and keeping latency
distribution tighter.

1M records perform better than expected, suggesting efficient caching, indexing, or database
optimizations at scale.

Low (R10) and moderate (R100) request rates show excellent stability, with 99th percentile latency
remaining within acceptable ranges.

At high load (R1000), 99th percentile latencies increase but remain within operational limits (~2s for 1M
records).

Final takeaway: The system handles high request loads efficiently across dataset sizes, and the previous 100K

anomaly serves as an anchor for discussions on system health monitoring.

RECOMMENDATIONS

o Optimize database indexing and query execution plans for large datasets.

o Implement caching mechanisms for frequently accessed data.

o Conduct capacity planning to identify and address resource bottlenecks.

o Consider load balancing strategies to handle higher concurrency and throughput.

o Finally be ready to auto-scale the deployment.

11

SIDE NOTES

@ Q Search or jump to... @ ctrizk + v ‘ @ AN .

v | [oere] B A

‘ & GitHub | ‘ & Grafana ’ @ Last15minutes v Q@ & 5s Auto v

= Home > Dashboards > Node Exporter Full

Datasource = default - ‘Job node v Host localhost:9100 ~

v Quick CPU / Mem / Disk

Pressure @ CPUBusy ® Sysload ® RAMUsed © SWAP Used © RootFSUsed © CPU.. © Uptime ©

cpu | 1.0% 8 1.7 days

mem | D% Root... © RAM.. © SWA.. ©
wo | - . 1.4% 30.6% 97.7% 62.8% B 1.8% sRTCR SicE Lcn

v Basic CPU / Mem / Net / Disk

CPUBasic ®

100%

Memory Basic ©

36 GIB
. 32GiB
0% 28Gi
. 24 GIB
90% 20 GIB
20% 16 GIB
12GiB
20% 8 GiB
46IB
0% 0B
10:45 10:50 10:55 10:45 10:50 10:55
== Busy System - BusyUser - Busylowait == BusyIRQs -~ Busy Other == Idle == RAM Total == RAMUsed RAM Cache + Buffer == RAM Free = SWAP Used
Network Traffic Basic © Disk Space Used Basic @
100%
20 Mb/s
15 Mb/s 80%
10 Mb/s
5 Mb/s 60%
-
- s0%
10:45 10:50 10:55 20%
e oy D3 TN EAAET08 Rl GOOKELD e oty onXD e Tocy e ATO13rE e recy Vel 50302 o, NN
== recv veth6277448 == recv veth737cedc == recv veth783del7 == recv veth7ef6a05 == recv veth7ffcc7c 10:45 10:50 10:55
= recv vethc959d61 == recv vethcf3ad63 — recv vethf2884f5 - trans br-a3f1b3aa5709 — trans docker0 = /boot/efi == [= [afs

> CPU [/ Memory [Net / Disk (3 panels)

D 100_000, ¢=100, R=1000

Home > Dashboards

Datasource = default Host localhost:9100 Z GitHub | (F Grafana () Last15minutes v @ Q Auto v

v Quick CPU / Mem / Disk

Pressure © CPU Busy Sys Load RAM Used SWAP Used RootFSUsed © Uptime

7.7 weeks

Root...) SWA...
487 GiB
v Basic CPU / Mem / Net / Disk

CPU Basic Memory Basic

100%

32 GiB
28 GiB
24 GiB
20 GiB
16 GIB
12 GIB

8 GiB

S 4GiB
. ' . — 0B

15:15 15:20 15:15 15:20

== Busy System Busy User Busy lowait == Busy IRQs Busy Other == Idle == RAM Total == RAM Used RAM Cache + Buffer == RAM Free

Network Traffic Basic Disk Space Used Basic
100
80%
607

-100 Mb/s

15) 15:25

== recv br-a3fib3aa5709 e= recv docker0 == recvenX0 == recv vethOac2612 recv vethOc3eecf

== recv veth6aldcal == recv veth986b759 recv vetha3d2a71 recv vethbf48alc == recv vethc9373e2

d83aall recv vethda v vethe29ce50 recv vethfdc287f trans br-a3f1b3aa5709

> CPU [/ Memory / Net / Disk

Sci1Cat
Data-In

Results, Mar 2025

Igor Khokhriakov aka Ingvord

Latency (s)

100

80

60|

40

20

Latency Distribution Across Different Request Rates (100 Metadata Fields)

o— 50th Percentile (Median)
- —8— 75th Percentile

—e— 90th Percentile

—o— 99th Percentile

—e— Max Latency

We are good in here

C

R10 R100

Request Rate (R)

R500

R1000

CONCLUSIONS
Summary of Ingestion Performance Tests (100 Metadata Fields)

Stable performance at low request rates (R10, R100)

e Low latency (50th percentile: 86ms at R10, 65ms at R100).
e The system handles these loads efficiently without degradation.

X Severe performance degradation at higher loads (R500, R1000)

e 50th percentile latency jumps to 47s (R500) and 54s (R1000).

e 99th percentile reaches 87s (R500) and over 100s (R1000), making real-time ingestion infeasible.

>{ Backend reaches a hard capacity limit (~140-150 reqg/sec)

e AtR500 and R1000, the system only achieves ~140-150 reqg/sec, far below the target rates.
e Indicates queueing, serialization, or database bottlenecks.

No outright failures, but long processing delays

e No timeouts or rejected requests, meaning the system is processing all requests but at a slow pace.

> Lack of horizontal scalability observed

e Higher concurrency does not improve throughput.
e Suggests database, transaction, or resource contention issues.

Latency (s)

100

80

60

40

20

Latency Distribution for 250 Metadata Fields (Including Extrapolated R1000)

—o— 50th Percentile (Median)
—e— 75th Percentile

—e— 90th Percentile

—e— 99th Percentile

—e— Max Latency

Not that great here

-

\

R10

R100

Request Rate (R)

R250

R1000

Latency (s)

175

150

125

=
o
o

~
ol

Ul
o

25

Latency Trends for 1000 Metadata Fields

50th Percentile 4
-®- 75th Percentile
—a-= 90th Percentile
L --4- 99th Percentile ;
— Avg Latency al

R10 R100 R250 R1000
Request Rate (R)

‘J:') Ingvord on |

Jo, I pinned down the suspect - it is convert-physical-quantities-interceptor . I this in the flame grpah:

etur adipiscing elit.

—— CONVERT PHYSICAL
B] « BUANTITIES

{MMG}_ =
St v

Thanks

Directed by
Igor Khokhriakov aka Ingvord

