
SciCat
Data-Out, PID

Igor Khokhriakov aka Ingvord

Results, Jan 2025

QUIZ

What result do you expect?

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

W
ith

 in
de

x
db

.D
at

as
et

.c
re

at
eI

nd
ex

({
pi

d:
 1

},{
 u

ni
qu

e:
 tr

ue
 }

)

Average Latency VS Number of Records in the DB (C10, R1000)

METHODOLOGY 4

Testing Tool:

● The benchmarking was conducted using wrk, a modern HTTP benchmarking tool capable of generating significant load with
multithreading and connection options.

Test Scenarios:

● Multiple configurations were tested by varying:
○ Dataset size: 1K, 10K, 100K and 1M records.
○ Request rate: R10, R100, and R1000 requests per second.
○ Concurrent connections: 50 and 100 connections.

Endpoints:

● The REST API endpoint /datasets/fullquery was tested with query parameters to simulate real-world search patterns.

Metrics Collected:

● Latency: Average, standard deviation, and percentiles (50th, 75th, 90th, 99th).
● Throughput: Achieved requests per second and total requests processed.
● Reliability: Number of socket errors (timeouts, connection issues).

1_000 Records, 10 Clients, Rate {10..1000} 5

Conclusions

● With 1K records, the system is highly efficient at all request rates, even at R1000, where it maintains
excellent performance.

● Limiting clients to 10 (-c10) ensures stable performance without significant latency spikes, even under high
throughput.

● Compared to 10K and 100K records, 1K datasets show minimal impact from increasing request rates,
indicating the backend can efficiently handle smaller datasets at scale.

10_000 Records, 10 Clients, Rate {10..1000} 6

Conclusions

● Limiting clients to 10 results in significantly improved system performance at all load levels.
● Unlike 100K records, where R1000 introduced substantial latency spikes, 10K records show no major

degradation even at R1000.
● The system scales well with 10K records, achieving the target request rate with low latency.
● For real-world usage, keeping concurrency controlled (e.g., -c10) can prevent unnecessary queuing delays

and improve stability.

100_000 Records, 10 Clients, Rate {10..1000} 7

Conclusions

● Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
● The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with

high average and 99th percentile latencies.
● Compared to previous high concurrency tests, reducing client count has a major positive impact on

performance.

1_000_000 Records, 10 Clients, Rate {10..1000} 8

Conclusions

● Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
● The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with

high average and 99th percentile latencies.
● Compared to previous high concurrency tests, reducing client count has a major positive impact on

performance.

Combined Results Tableview

CONCLUSIONS 10

● System scales well under high request rates, with 1K, 10K, 100K, and 1M records maintaining low latency

at R1000.

● 100K records initially showed a performance spike, but this was due to system overload (100% RAM and

swap usage)—when properly tested, it performed reasonably well.

● Limiting concurrency (-c10) significantly improves stability, reducing queuing effects and keeping latency

distribution tighter.

● 1M records perform better than expected, suggesting efficient caching, indexing, or database

optimizations at scale.

● Low (R10) and moderate (R100) request rates show excellent stability, with 99th percentile latency

remaining within acceptable ranges.

● At high load (R1000), 99th percentile latencies increase but remain within operational limits (~2s for 1M

records).

● Final takeaway: The system handles high request loads efficiently across dataset sizes, and the previous 100K

anomaly serves as an anchor for discussions on system health monitoring.

RECOMMENDATIONS 11

○ Optimize database indexing and query execution plans for large datasets.

○ Implement caching mechanisms for frequently accessed data.

○ Conduct capacity planning to identify and address resource bottlenecks.

○ Consider load balancing strategies to handle higher concurrency and throughput.

○ Finally be ready to auto-scale the deployment.

SIDE NOTES

SYSTEM LOAD 100_000, c=100, R=1000 14

SciCat
Data-In

Igor Khokhriakov aka Ingvord

Results, Mar 2025

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

We are good in here

CONCLUSIONS 17

Summary of Ingestion Performance Tests (100 Metadata Fields)

✅ Stable performance at low request rates (R10, R100)

● Low latency (50th percentile: 86ms at R10, 65ms at R100).
● The system handles these loads efficiently without degradation.

❌ Severe performance degradation at higher loads (R500, R1000)

● 50th percentile latency jumps to 47s (R500) and 54s (R1000).
● 99th percentile reaches 87s (R500) and over 100s (R1000), making real-time ingestion infeasible.

❌ Backend reaches a hard capacity limit (~140-150 req/sec)

● At R500 and R1000, the system only achieves ~140-150 req/sec, far below the target rates.
● Indicates queueing, serialization, or database bottlenecks.

✅ No outright failures, but long processing delays

● No timeouts or rejected requests, meaning the system is processing all requests but at a slow pace.

❌ Lack of horizontal scalability observed

● Higher concurrency does not improve throughput.
● Suggests database, transaction, or resource contention issues.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Not that great here

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Thanks

Directed by
Igor Khokhriakov aka Ingvord

