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QUIZ

What result do you expect?
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Average Latency VS Number of Records in the DB  (C10, R1000)



METHODOLOGY 4

Testing Tool:

● The benchmarking was conducted using wrk, a modern HTTP benchmarking tool capable of generating significant load with 
multithreading and connection options.

Test Scenarios:

● Multiple configurations were tested by varying:
○ Dataset size: 1K, 10K, 100K and 1M records.
○ Request rate: R10, R100, and R1000 requests per second.
○ Concurrent connections: 50 and 100 connections.

Endpoints:

● The REST API endpoint /datasets/fullquery was tested with query parameters to simulate real-world search patterns.

Metrics Collected:

● Latency: Average, standard deviation, and percentiles (50th, 75th, 90th, 99th).
● Throughput: Achieved requests per second and total requests processed.
● Reliability: Number of socket errors (timeouts, connection issues).
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Conclusions

● With 1K records, the system is highly efficient at all request rates, even at R1000, where it maintains 
excellent performance.

● Limiting clients to 10 (-c10) ensures stable performance without significant latency spikes, even under high 
throughput.

● Compared to 10K and 100K records, 1K datasets show minimal impact from increasing request rates, 
indicating the backend can efficiently handle smaller datasets at scale.



10_000 Records, 10 Clients, Rate {10..1000} 6

Conclusions

● Limiting clients to 10 results in significantly improved system performance at all load levels.
● Unlike 100K records, where R1000 introduced substantial latency spikes, 10K records show no major 

degradation even at R1000.
● The system scales well with 10K records, achieving the target request rate with low latency.
● For real-world usage, keeping concurrency controlled (e.g., -c10) can prevent unnecessary queuing delays 

and improve stability.



100_000 Records, 10 Clients, Rate {10..1000} 7

Conclusions

● Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
● The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with 

high average and 99th percentile latencies.
● Compared to previous high concurrency tests, reducing client count has a major positive impact on 

performance.
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Conclusions

● Lowering concurrent clients (-c10) significantly reduces queuing effects and improves system stability.
● The system scales well at low to moderate request rates (R10, R100) but still struggles under R1000, with 

high average and 99th percentile latencies.
● Compared to previous high concurrency tests, reducing client count has a major positive impact on 

performance.



Combined Results Tableview
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● System scales well under high request rates, with 1K, 10K, 100K, and 1M records maintaining low latency 

at R1000.

● 100K records initially showed a performance spike, but this was due to system overload (100% RAM and 

swap usage)—when properly tested, it performed reasonably well.

● Limiting concurrency (-c10) significantly improves stability, reducing queuing effects and keeping latency 

distribution tighter.

● 1M records perform better than expected, suggesting efficient caching, indexing, or database 

optimizations at scale.

● Low (R10) and moderate (R100) request rates show excellent stability, with 99th percentile latency 

remaining within acceptable ranges.

● At high load (R1000), 99th percentile latencies increase but remain within operational limits (~2s for 1M 

records).

● Final takeaway: The system handles high request loads efficiently across dataset sizes, and the previous 100K 

anomaly serves as an anchor for discussions on system health monitoring.
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○ Optimize database indexing and query execution plans for large datasets.

○ Implement caching mechanisms for frequently accessed data.

○ Conduct capacity planning to identify and address resource bottlenecks.

○ Consider load balancing strategies to handle higher concurrency and throughput.

○ Finally be ready to auto-scale the deployment.



SIDE NOTES
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We are good in here



CONCLUSIONS 17

Summary of Ingestion Performance Tests (100 Metadata Fields)

✅ Stable performance at low request rates (R10, R100)

● Low latency (50th percentile: 86ms at R10, 65ms at R100).
● The system handles these loads efficiently without degradation.

❌ Severe performance degradation at higher loads (R500, R1000)

● 50th percentile latency jumps to 47s (R500) and 54s (R1000).
● 99th percentile reaches 87s (R500) and over 100s (R1000), making real-time ingestion infeasible.

❌ Backend reaches a hard capacity limit (~140-150 req/sec)

● At R500 and R1000, the system only achieves ~140-150 req/sec, far below the target rates.
● Indicates queueing, serialization, or database bottlenecks.

✅ No outright failures, but long processing delays

● No timeouts or rejected requests, meaning the system is processing all requests but at a slow pace.

❌ Lack of horizontal scalability observed

● Higher concurrency does not improve throughput.
● Suggests database, transaction, or resource contention issues.
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