ECALp CSIS-Assembly

Melissa Almanza, C. Blanch, S. Huang, A. Irles, C. Orero

*AITANA group at IFIC - CSIC/UV

Thickness "budget"

IFIC
INSTITUT DE FÍSICA
C O R P U S C U L A R

○CF: 225um +-10um

▶ Fanout: 115-135um

depends on the "accumulation" of routing lines

Sensor: 320um

► HV kapton: 55-60um

Total (with no glue layers) = 715-760um

Notes:

- the siliconne layer thickness cannot be improved with "manual" pressure because we do this step at the end, with sensors attached
- Thin double tape can be a possibility for replacement of the siliconne (under study)

CSIS: Compact Silicon Sandwich

CSIS: Compact Silicon Sandwich

CSIS Architecture

The blue mark of the drawing goes in the side nearest to the connectors

Inventory – available at IFIC

- Sensors characterized-
 - 20 from TAU are in the dry cabinet OK
 - In the process of been cleaned. ongoing we clean every batch that we need
- **►** Adhesive **OK**
 - Different types of conductive glue + non-conductive

⊳CF

- ~15 low quality CF (made by ClipCarbono being used for tests)
- 20 better quality CF (made by ClipCarbono but machined by WorkShape (FR) OK

Inventory – available at IFIC

○Signal Fanouts

- 8 FO kaptons with connectors: Not OK (but 20 more are in production by TAU)
- + 2 in Krakow
- + 2 used for CF glue tests
- +7 being used for glueing/curing/deformation studies tests today and tomorrow

►HV kaptons Fanouts

- 15 HV kaptons with connectors: Almost OK (but 20 more are in production by TAU)
- 5 being used in tests

NOTE, 6/8 FO have been used for current CSIS production already (see last slides)

2 more may be recoverable

Gluing

3d programable robot - PDS400

Sequential procedure - obsolete

CF gluing was planned as the first step – to strengthen the mechanical robusteness of the CSIS

Obsolete: why? Because the step of curing at high temperatures with the FO+CF glued, created high mechanical tensions → high deformations

Curing tests with real FOs

Beginning of May tests (CF+real Fanout using siliconne glue)

before curing

During curing

▶ All previous tests were done with smaller fanouts and/or inside the jigs.

More curing tests

Sequential procedure - NEW

Now the CF is glued only at the end.

We cure the H20E glue (HV+FO) inside the jigs → slows down the process by a lot.

Tooling

▶ Jigs and tooling manufactured at IFIC

No feeler gauges used for current production → only the weight of the jigs

Tooling

• Jigs and tooling manufactured at IFIC

Tooling

IFIC

• Jigs and tooling manufactured at IFIC

Glue mixing

• Glue preparation (of small doses!) is an art – which has been mastered by the team

Glue mixing

Glue preparation (of small doses!) is an art – mastered by the Carlos and Melissa (others in the process)

Glue deposition

- We deposited more than 2112 glue dots → only 4 were wrong.
 - Manually corrected with a needle and profiting from capillarity effects to deposit.

Glue deposition

> We deposited more than 2112 glue dots → only 4 were wrong.

• Manually corrected with a needle and profiting from capillarity effects to deposit the drop

Glue deposition

• Takes 16 minutes.

Curing and cooling

(almost final) CSIS

Still not flat...

- After the curing we observed a small deformation of the sensor.
 - It is flexible enough to be flattened again just with small pressure
 - The FO doesn't look disconnected (the FO is also flexible).

Final step: the CF

• 5um thick double tape 3M 82600

Final step: the CF

• Siliconne DOWSIL 736

TEH MOV 2025

Towards the most compact HG-calorimeter

SFQED SFQE	SFQED SFQED
2025_001 in p 1 800.12 81 2 800.17 81 3 809 4 813 5 818 6 825	m by a micrometro
7 826 2025_004 1 737 2 735 3 776 4 774 6 708 7 724	Strong-Field QED Workshop 2024, DESY

- First measurements with micrometer (manual procedure)→ Very promising values.
 - 001 max **826um** has a the DOW736 glue (~100um)
 - 004- max **776um** uses the double tape (~5um)

Bending?

- Very thin CSIS but slightly bent?
- ▶It doesn't seem to be a problem → the planarity is recovered easily with some pressure.
- ▷ Is the temperature the culprit? Is the HV kapton the culprit? .. under study
 - Metrology will be done in the coming days.
 - We cured one of the CSIS at 80 degrees (for 3h) instead of 140°

Happy first 6 CSIS

Happy first 6 CSIS

Summary -I

- The process for making 6 CSIS takes:
 - 12h for the glue preparation (2h of preparation, 10h of precuring overnight)
 - 3.5h per CSIS for the FO&HV glueing to the sensor (25~ minutes of actual work, the rest is the curing process... during which we cannot do anything because the jigs are in the oven)
 - Total: 2.0 days (lifetime of the glue is 2.5 days).

Speed up possibilities:

- Do not do the pre-curing (i.e., after preparing the glue, start with the glueing right away).
- Use more aggressive curing times (shorter time in the oven to be evaluated)
- Use less aggressive curing temperatures (longer times but we can open the jig and leave the CSIS cure while we recover the jig, after 1h of curing at 80degrees).
- Use other glue monocomponent and lower temp. curing (test to be done on monday, CSIS2025_007 and 008.

>We need to receive the FO+HV by the end of next week to be able to assembled the remaining 12

Summary -II

- CSIS2025_001 to 006 are ready
 - They look great

- Numbers to be completed soon
 - 001 siliconne for CF, 140degree curing for the H20E
 - 002 siliconne for CF, 140degree curing for the H20E
 - 003- siliconne for CF, 140degree curing for the H20E
 - 004 double tape for CF, 140degree curing for the H20E
 - 005 double tape for CF, 140degree curing for the H20E
 - 006 double tape for CF, 80degree curing for the H20E
- All details and reports, including lots of pictures, can be found in the cernbox
 - Link to be shared...

Summary -III

IFIC

INSTITUT DE FÍSICA
CORPUSCULAR

- Yesterday we received the PCBs for connectivity tests
 - Bonding of the connectors has been done at IFIC (manually!)
 - Tests are foreseen for this monday.
- What do we do with the manufactured CSIS? Do we send them to Poland now? My proposal:
 - Keep them at IFIC until end of next week and send them only after been tested at IFIC.

