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ATLAS Detector
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HL-LHC Upgrade

https://project-hl-lhc-industry.web.cern.ch/sites/default/files/inline-images/HL-LHC_Plan_January2025.png

• Higher data rate

• New readout electronics

• More computing power

https://project-hl-lhc-industry.web.cern.ch/sites/default/files/inline-images/HL-LHC_Plan_January2025.png
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Noise Bursts (NB)

ATLAS Collaboration, CERN-PH-EP-2014-045

• Highly energetic 

• Stretch over large detector regions

• Coherent Gaussian noise

• Short events in the order of μs

• Likely due to High Voltage cables in 
the LAr purity system



Unsupervised Detection of Noise Bursts in Simulated LAr Signals with Autoencoders
Institute for Nuclear and Particle Physics, TU Dresden  // Julian Herrmann
TA5-WP2/WP5: Working meeting - neural networks on FPGAs // 14th May 2025

Slide 6

Latent 
Space

Encoder

In
p

u
t 

D
a

ta
 𝒙

Autoencoders

• Goal: Reconstruct input data in training

• “Bottleneck” ensures loss of information 
during encoding process

→ e.g. MSE( Ԧ𝑥, Ԧ𝑥′)
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Loss function:
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Training Dataset

Pileup (𝜇 = 140)

Different signal scenarios alternate every 10000 BC

Signal hits
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Normalization:
𝑛 𝑥𝑖 = sign 𝑥𝑖 ⋅ ln(1 + 𝑥𝑖 )

Arranging input data into sliding window

• Window size = 10

Data Preprocessing
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Simulation of Noise Bursts
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Finding the best network

Constrains for hyperparameter search:

1. Latent dim. < Input dim.

2. Number of nodes in the encoder must be 
decreasing from one layer to the next

3. Max. 500 parameters for en- and 
decoder
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Selected Network

Parameter Value

Input dim. 10

Dim. Layer 1 20

Dim. Layer 2 8

Latent dim. 6

Epochs 200
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Selected Network
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Selected Network
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Splitting the VAE and tuning of 𝜷

KLD Loss term:

ℒKL =
1

2
𝜇2 + 𝜎2 − 1 − log 𝜎 L =෍

𝑖

𝜇𝑖
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New score shows same behaviour as full VAE
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No local AnomalyLocal Anomaly

Multiple cell Anomaly Detection

𝑡1 𝑡2 𝑡3 𝑡4 …Cell History 1:

𝑡4 𝑡5 𝑡6 𝑡7 …Cell History 2:

𝑡2 𝑡3 𝑡4 𝑡5 …Cell History 3:

…

Global 
Anomaly Flag !

≥ 80%

Time Window 

Every anomaly flagged 
regardless of overlap
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Multiple cell Anomaly Detection: Results
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Summary and Outlook

• Simulation of Noise Burst signals using FFT

• Training of Variational Autoencoder for anomaly detection

• Splitting of VAE to reduce computing resources 

• Algorithm for multiple cell anomaly detection

▪ Testing simulated NB and VAE on real data

▪ Comparison with other classical anomaly detection 
methods

▪ Optimization for FPGA (further minimization of network 
size)

▪ Training on additional signal properties (Q-Factor)
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Backup Slides
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Lost Luminosity in Run 2

ATLAS Collaboration, ATL-LARG-PROC-2020-006
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Machine Learning
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Reparameterization trick
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How can we perform backpropagation through a sampling operation?



Unsupervised Detection of Noise Bursts in Simulated LAr Signals with Autoencoders
Institute for Nuclear and Particle Physics  // Julian Herrmann
Bachelor Defense Talk // 14th May 2025

Slide 24

Training Dataset

Both Pileup (𝜇 = 140) and signal hits

• Bunch length = 5 cm, BTS = 1 (all bunches filled)

• Scenarios alternate every 10000 BC

• Smaller Validation Dataset with different signal arrangement

Signal type Energy range 
[GeV]

Number of input 
units

Constant gap (Δ𝑡gap = 45 BC) ≈[0, 150] 100

Gaussian gap (𝜇gap = 30 BC, 𝜎gap = 10 BC) ≈[0, 20] 100

Uniform gap (𝑡gap between 0 and 70 BC) ≈[0, 150] 100

Only-pileup ≈[0, 5.5] 100
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Hyperparameters optimization results
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Reconstruction performance on Only Pileup samples (full VAE)
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Correlation between new anomaly score and energy

𝛽 = 0.01 𝛽 = 0.9

Test data: High energy signal peaks with a constant gap
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Correlation between new anomaly score and energy

𝛽 = 0.01 𝛽 = 0.9
Test data: High energy signal peaks with a uniform gap
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Multiple cell Anomaly Detection: Results uniform gap samples
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