

ATLAS Detector

ATLAS Detector

HL-LHC Upgrade

- Higher data rate
- New readout electronics
- More computing power

https://project-hl-lhc-industry.web.cern.ch/sites/default/files/inline-images/HL-LHC Plan January2025.png

Noise Bursts (NB)

- Highly energetic
- Stretch over large detector regions
- Coherent Gaussian noise
- **Short events** in the order of μs
- Likely due to High Voltage cables in the LAr purity system

ATLAS Collaboration, CERN-PH-EP-2014-045

Autoencoders

- Goal: Reconstruct input data in training
- "Bottleneck" ensures loss of information during encoding process
 - \rightarrow e.g. MSE(\vec{x}, \vec{x}')
- Anomaly detection: AE fails to find a good reconstruction of anomalous data
 - → Threshold for loss term

Variational Autoencoders

Loss function:

$$\mathcal{L} = (1 - \beta)\mathcal{L}_{Rec}(\vec{x}', \vec{x}) + \beta \cdot D_{KL}(\mathcal{N}(\mu, \sigma) | \mathcal{N}(0, 1))$$

$$\mathcal{L} = (1 - \beta)\mathcal{L}_{\text{Rec}}(\vec{x}', \vec{x}) - \frac{\beta}{2}(\log(\sigma^2) + 1 - \mu^2 - \sigma^2)$$

Training Dataset

Different signal scenarios alternate every 10000 BC

Data Preprocessing

Normalization:

$$n(x_i) = \operatorname{sign}(x_i) \cdot \ln(1 + |x_i|)$$

Arranging input data into sliding window

• Window size = 10

Time t				
x_1	x_2	x_3	x_4	x_5
x_2	x_3	x_4	x_5	x_6
x_3	x_4	x_5	x_6	x_7
x_4	x_5	x_6	x_7	x_8
x_5	x_6	x_7	<i>x</i> ₈	<i>x</i> ₉

Simulation of Noise Bursts

Finding the best network

Constrains for hyperparameter search:

- 1. Latent dim. < Input dim.
- 2. Number of nodes in the encoder must be decreasing from one layer to the next
- 3. Max. 500 parameters for en- and decoder

$$\mathcal{L}_{Rec} = \begin{cases} \frac{1}{N} \sum_{i} \frac{(\hat{O}_{i} - O_{i})^{2}}{2}, & |\hat{O} - O| < 1\\ \frac{1}{N} \sum_{i} |\hat{O}_{i} - O_{i}| - \frac{1}{2}, & |\hat{O} - O| > 1 \end{cases}$$

Latent Space c_{12} c_{23} c_{23} c_{24} c_{25}		Encoder		Decoder	
	Input Data $ec{x}$	e_{11} e_{12} e_{21} e_{13} e_{22} e_{14} e_{23}	Space z	d_{11} d_{22} d_{12} d_{23} d_{13} d_{24}	Data

-10

β	Batch Size	Optimizer	Initial LR	Activation
0.01	1000	Adam	$1 \cdot 10^{-3}$	Leaky ReLU

Hyperparameter optimization with asynchronous **Hyperband** search

10

Selected Network

Parameter	Value
Input dim.	10
Dim. Layer 1	20
Dim. Layer 2	8
Latent dim.	6
Epochs	200

Selected Network

Selected Network

Splitting the VAE and tuning of β

KLD Loss term:

$$\mathcal{L}_{KL} = \frac{1}{2}(\mu^2 + \sigma^2 - 1 - \log(\sigma))$$

$$L = \sum_{i} \mu_i^2$$

New score shows same behaviour as full VAE

Multiple cell Anomaly Detection

Multiple cell Anomaly Detection: Results

Summary and Outlook

- Simulation of Noise Burst signals using FFT
- Training of Variational Autoencoder for anomaly detection
- Splitting of VAE to reduce computing resources
- Algorithm for multiple cell anomaly detection

- Testing simulated NB and VAE on real data
- Comparison with other classical anomaly detection methods
- Optimization for FPGA (further minimization of network size)
- Training on additional signal properties (Q-Factor)

Backup Slides

Lost Luminosity in Run 2

Machine Learning

Single Node: $o = g(\sum_i w_i \cdot x_i + b)$

Sigmoid ReLU $\begin{array}{c} 1 \\ 0 \\ 0 \\ -10 \\ \end{array}$ $\begin{array}{c} 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ -10 \\ \end{array}$ $\begin{array}{c} 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ \end{array}$ $\begin{array}{c} 0 \\ \end{array}$ $\begin{array}{c} 0 \\ \end{array}$

Loss Functions: desired output \hat{o}

$$\mathcal{L}_{\text{MAE}}(\hat{O}, O) = \frac{1}{N} \sum_{i} |\hat{O}_{i} - O_{i}|$$

$$\mathcal{L}_{\text{MSE}}(\hat{O}, O) = \frac{1}{N} \sum_{i} (\hat{O}_{i} - O_{i})^{2}$$

Reparameterization trick

How can we perform backpropagation through a sampling operation?

Deterministic Node

Stochastic Node

$$z = \mu + \sigma \odot \epsilon$$

Training Dataset

Both Pileup ($\mu = 140$) and signal hits

Signal type	Energy range [GeV]	Number of input units
Constant gap ($\Delta t_{ m gap} = 45$ BC)	≈[0, 150]	100
Gaussian gap ($\mu_{ m gap}=30$ BC, $\sigma_{ m gap}=10$ BC)	≈[0, 20]	100
Uniform gap ($t_{ m gap}$ between 0 and 70 BC)	≈[0, 150]	100
Only-pileup	≈[0, 5.5]	100

- Bunch length = 5 cm, BTS = 1 (all bunches filled)
- Scenarios alternate every 10000 BC
- Smaller Validation Dataset with different signal arrangement

Hyperparameters optimization results

Initial Hyperparameters: β = 0.5, LR = 0.001, Batch Size = 1000

Reconstruction performance on Only Pileup samples (full VAE)

Correlation between new anomaly score and energy

Test data: High energy signal peaks with a constant gap

Correlation between new anomaly score and energy

Test data: High energy signal peaks with a uniform gap

Multiple cell Anomaly Detection: Results uniform gap samples

