

Deep Learning for Real-time Classification of Astronomical Radio Signals: Current Status

Andrei Kazantsev, Ramesh Karuppusamy, Yunpeng Men, Rishi Kumar, Michael Kramer

Max Planck Institute for Radio Astronomy

Bonn, Germany

Max-Planck-Institut für Radioastronomie

May 19, 2025

PUNCH4NFDI consortium

The task areas of the PUNCH4NFDI consortium

Work Packages in Task Area 5

Dynamic Life Cycle Model

The work packages of TA5 of the PUNCH4NFDI consortium

Astronomical Radio Signals

Example of dispersion delay for an individual pulse from J1800+5034

Astronomical Radio Signals

Example of dispersion delay for an individual pulse from J1800+5034

Roseta Stone for Pulsar Astrophysics

Detection of the Astronomical Radio Signals

Radio Telescope Effelsberg, Bad Münstereifel, Germany © Hans Blossey

Astronomical and non- Astronomical Radio Signals

Data Formats in Radio Astronomy

Format	Baseband data (dada files)	file)	Time series
21 minutes	1.6 TB	3 GB	49 MB

Data Rate in Radio Astronom		
Radio telescope	Radio telescone	

Data Rate in F	Radio Astronom

name

Effelsberg

MeerKAT

Square Kilometer

Array

onomy

Bitrate per beam

P210-7: 11.04 Gb /s

UWB: 290 Gb/s

107 Mb/s

~ 1 Gb/s

Total bitrate

77 Gb/s(7)

290 Gb/s(1)

1.7 Tb / s

(~1024 beams)

20 Tb / s

(>2200 beams)

©:Hans Blossey

©:SKAO

exterior

©:picture alliance / Xinhua / CSIRO

Statistics for One Observation

Object: Crab pulsar (B0531+21)

Data: 2020-05-31

Time resolution: 102.4 µs

Telescope: Effelsberg

Bandwight: 1210 - 1530 MHz

Duration: 21 minutes

Conception of the Task

CNN Usage for Pattern Recognition

Convolution Neural Network (CNN) © Kh. Nafizul Haque

CNN Usage in Astronomy

Usage of Extremely Minimalistic Model

Extremely Minimalistic Classifier Architecture

Spectrogram Classifier

Data Preparation

Number of classes: 8

Test with four image resolutions

Model Selection HP Tuning Training Validation Validation With additional dataset

SNR

Spectrograms vs. DM-Images

"Bow-tie" with Different SNR

TransientX as a Fast Solution for Dedispersion

a one command line high performance transient search software.

https://github.com/ypmen/TransientX

DM-time Data from TransientX

DM-time dataset

- Train

12

Epoch

Validation

Results of Training and Validation

0.00

Model DM time binary classificator 240315 2 performance for 256x256 resolution

Epoch

Model DM time binary classificator 240315 1 performance for 256x256 resolution

Comparison with TransientX Results

Results of Tests with Real Data

Model name	%	Model did not find	Model found additionally	Unique for the model
2_256	93.5	22	210 / 110	25
2_128	94.4	19	212 / 90	14
2_64	94.4	19	274 / 99	11
2_32	75.2	87	164 / 33	1
3_256	94.6	18	125 / 85	11
3_128	94.6	18	97 / 66	5
3_64	94.4	19	150 / 68	4
3_32	85.6	50	477 / 58	7

··• Accuracy -×- Recall

SNR Sensitivity

Testing with New Data

Object: Crab pulsar (B0531+21)

Data: **2024-06-21**

Time resolution: 81.92 µs

Telescope: Effelsberg

Bandwight: 1281 - 1600 MHz

Duration: 30 minutes

Key Metrics for the Models on New Data

SNR Sensitivity on the New Data

The Pipeline for Pulse Classification in a Filterbank File 39

Performance Metric of the Pipeline

Data Availability on the Edmond Platform

https://doi.org/10.17617/3.HQYC8O

Summary for the Current Stage

- The extremely minimalistic CNN model has been trained on DM-time images to detect individual pulses from the Crab pulsar with acceptable accuracy and sensitivity.
- The processing pipeline has been created to recognize individual pulses from Crab pulsar in filterbank files that includes TransientX and the trained model.
- The performance of the pipeline meets the set requirements.

Next Steps

Rishi Kumar

Questions? Suggestions?