

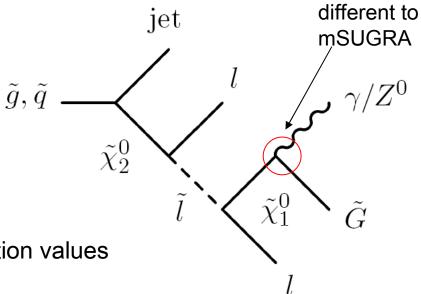
Searches for GMSB SUSY

Johannes Haller, Wolfgang Ehrenfeld, Mark Terwort

Overview

- GMSB Model
- Search for di-photon events
- Other signatures
- Summary

GMSB - Model I

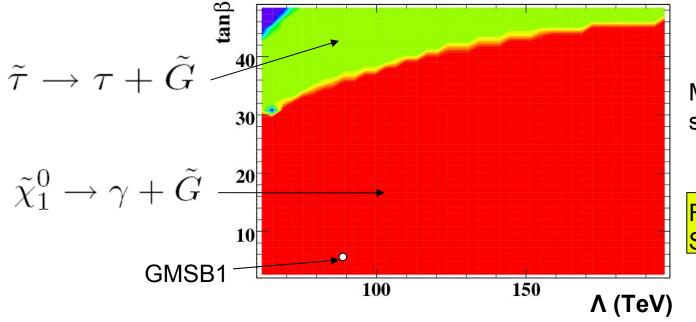

Gauge mediated SUSY breaking can be understood in terms of loop effects in a renormalizable framework (in contrast to mSUGRA).

- Lightest SUSY particle (LSP): Gravitino
- 2nd lightest SUSY particle (NLSP): Neutralino or Slepton
- Missing energy from Gravitino

Parameters (general model has 124):

- → Λ: Breaking scale
- → M: Mass scale of the messengers
- → tanβ: Ratio of Higgs vacuum expectation values
- → N: Number of messenger multiplets
- \rightarrow sign(μ): Sign of the Higgs mass parameter
- → C_{grav}: Scale factor of the Gravitino mass → lifetime of NLSP

Typical decay chain for Neutralino NLSP



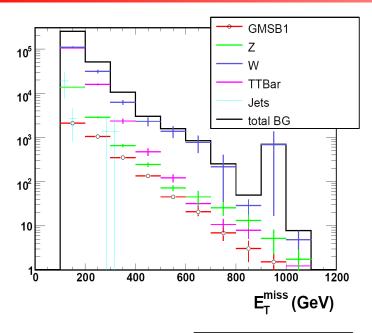
GMSB - Model II

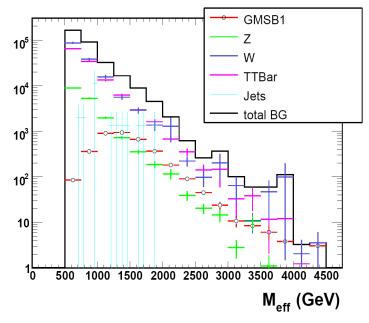
- 4 main topologies in GMSB:
 - prompt decay: di-photon events (e.g. GMSB1, $tan\beta = 5$, N = 1)
 - non-pointing photons (e.g. GMSB3, $tan\beta = 5$, N = 1)
 - prompt decay: di-tau final states (e.g. GMSB6, $tan\beta = 30$, N = 3)
 - long lifetime sleptons: quasi stable staus (e.g. GMSB5, $tan\beta = 5$, N = 3)

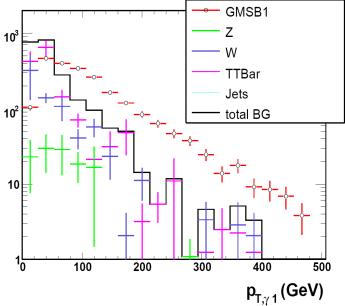
M = 500 TeV, N = 1, $sign(\mu) = 1, C_{grav} = 1$

For N > 1, always Stau NLSP

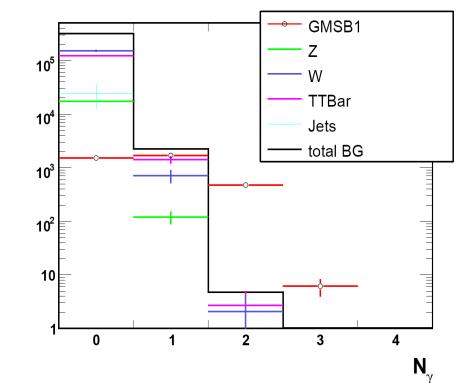
Data Samples




- Use officially produced Alpgen samples of the SUSY group.
 → Precuts are: E_T^{miss} > 80 GeV, N_{jets} > 4, p_T(jet) > 50 GeV, p_T(leading jet) > 100 GeV for the background
- Typical SUSY background is W+jets, Z+jets, ttbar, QCD jets.
 → QCD+photons doesn't contribute.
- NTuples produced with HighPtView.
- The official Alpgen samples have 1mm bug.
 - → Corrected with HighPtView.



GMSB1 Distributions (1fb⁻¹)


- Standard cuts on missing energy and effective mass not sufficient to reject background.
- Large amount of high momentum photons
 - → good cut objects

GMSB1 Selection

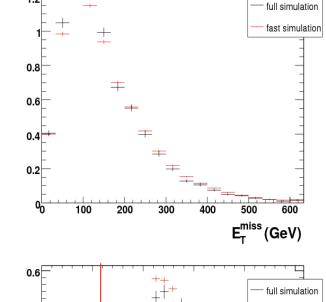
- Photons: $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$
- Many hard photon events in GMSB1.
- Additional cuts on effective mass, missing energy, number of photons and number of OSSF lepton pairs.

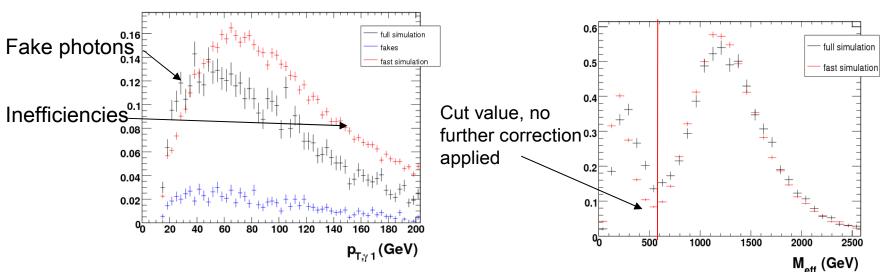
• Example cutflow with significance (normalized to 1 fb⁻¹):

Meff	MET	пP	LP	Signal	BG	Sig	nW	nΖ	nttbar	nJets
600	20%	0	0	3180.5	189349	7.3	97415.8	11244	72041.8	8646.9
600	20%	1	0	1877.7	1434.0	49.6	575.4	49.0	809.6	0
600	20%	2	0	413.0	0.5	614.5	0	0	0.5	0
600	20%	2	1	50.7	0	50.7	0	0	0	0

Large significance $S = \frac{\# Signal}{\sqrt{\# BG}}$

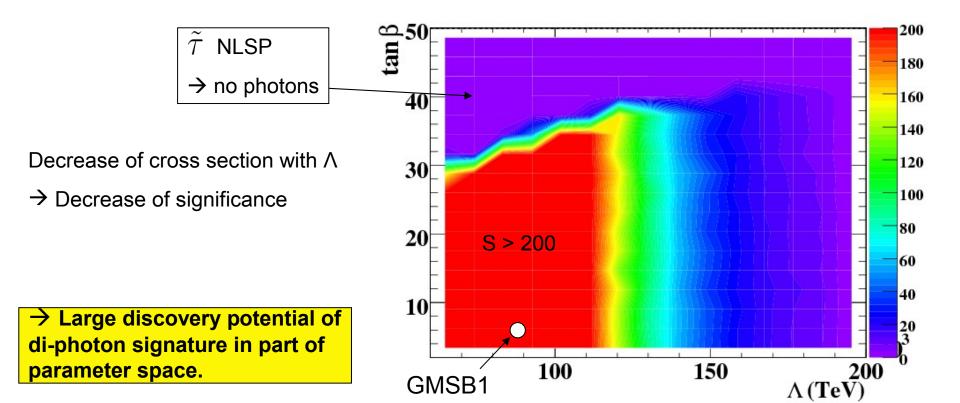
with simple cuts!


→2 hard photons: channel almost BG free



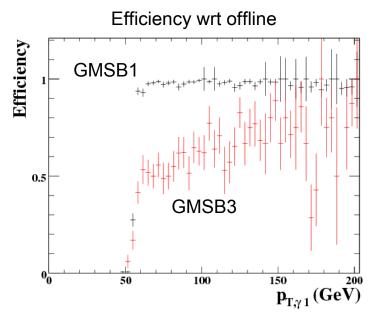
Fast vs. full simulation

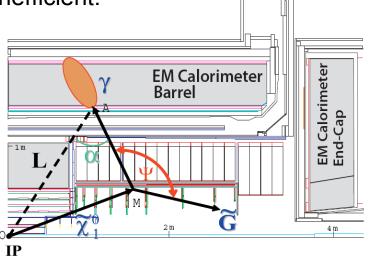
- Fast simulation needed for parameter scans.
 - → What is the performance for the signal in study?
 - → What are the efficiencies, which have to be put in by hand?
- Full vs. fast simulation for GMSB1.


→ Agreement is achieved by correcting fast simulation by known efficiencies

GMSB discovery potential

- GMSB simulation with ATLFAST
- Generation with ISAJET 7.74 (M = 500 TeV, N = 1, sign(μ) = 1, C_{grav} = 1)
- MC Data normalized to 1 fb⁻¹, the assumed photon efficiency is 70%.




Trigger Efficiencies

- In GMSB the NLSP can have different lifetimes due to C_{grav}.
 - → Non-pointing (to the IP) photons in the calorimeters, as in GMSB3.
 - → Shower shapes etc. look different!
 - → normal photon triggers (here g60) maybe inefficient.

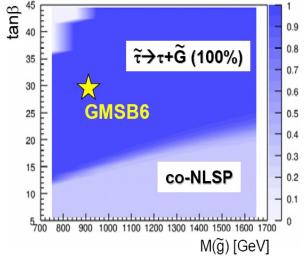
- For prompt photons photon triggers as good as standard SUSY trigger, e.g. E_T^{miss}, jets etc.
- For non-pointing photons efficiency loss for standard g60 and 2g20i trigger.

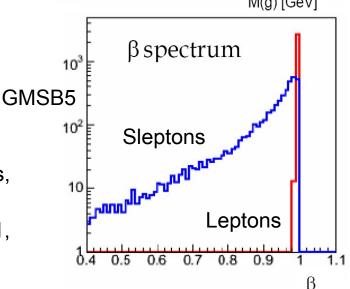
Total efficiency

	<u> </u>					
		EF				
GMSB1	g60	80.5 ± 1.4				
	2g20i	47.9 ± 1.8				
GMSB3	g60	36.9 ± 1.8				
	2g20i	12.9 ± 1.2				

Other possible GMSB signatures

In some GMSB scenarios NLSP = Slepton (e.g. N >1, large tanβ).


2 taus in final state:


- e.g. GMSB6 (tanβ = 30, N = 3).
- BG rejection with 4 high p_⊤ jets, missing energy and 2 tau jets.
- Since gravitino is massless, downstream tau is hard and invariant mass can be reconstructed.

Quasi stable staus:

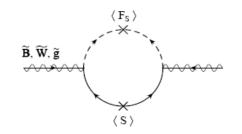
- e.g. GMSB5 (tanβ = 5, N = 3).
- For $β \sim 1$ not distinguishable from ordinary muons, use muon triggers.
- Bunch crossing identification challenging for β < 1, but most events contain a high β (> 0.7) slepton.

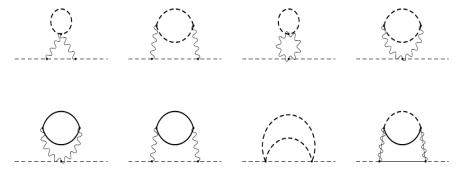
Tarem, Nomoto et al.

Summary

- GMSB breaks supersymmetry radiatively.
- Different final states in GMSB
 - Di-photon (prompt)
 - Non-pointing di-photon
 - Di-tau final state
 - Quasi stable staus
- Study of di-photon signatures presented in detail.
- Large discovery potential for some parameter regions
 → perhaps even with a few pb⁻¹ of data.
- Presented studies are part of SUSY-CSC8 note.

GMSB theory in a nutshell


Messenger fields are chiral superfields which transform under SM as


$$q \sim (\mathbf{3}, \mathbf{1}, -\frac{1}{3}); \quad \overline{q} \sim (\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}); \quad \ell \sim (\mathbf{1}, \mathbf{2}, \frac{1}{2}); \quad \overline{\ell} \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2})$$

- Coupling to a gauge singlet chiral superfield S: $W_{
 m mess}=y_2S\ell\overline{\ell}+y_3Sq\overline{q}$
- Scalar components of S aquire VEVs and produce massterms

$$\begin{array}{ll} \ell, \overline{\ell}: & m_{\text{fermions}}^2 = |y_2 \langle S \rangle|^2 \,, & m_{\text{scalars}}^2 = |y_2 \langle S \rangle|^2 \pm |y_2 \langle F_S \rangle| \\ q, \overline{q}: & m_{\text{fermions}}^2 = |y_3 \langle S \rangle|^2 \,, & m_{\text{scalars}}^2 = |y_3 \langle S \rangle|^2 \pm |y_3 \langle F_S \rangle| \end{array}$$

- One loop contributions to gaugino masses
 - → Gauge mediated breaking
 - → Scalars aquire 2-loop masses

