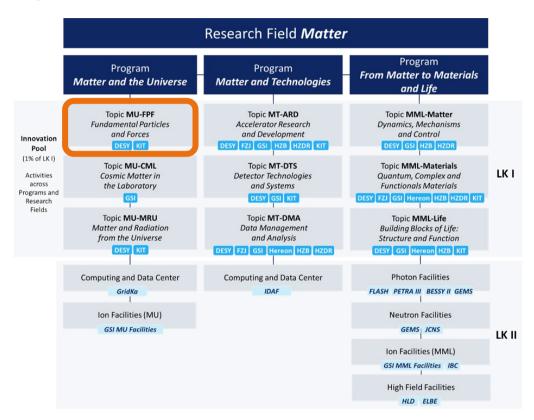
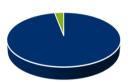


The vision for MU-FPF

Isabell Melzer-Pellmann, Kai Schmidt-Hoberg DESY


21 July 2025


HELMHOLTZ

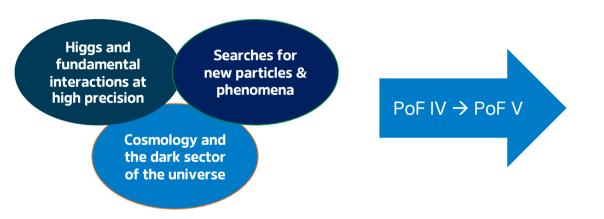


### Research field Matter

### **Topic "Fundamental Particles and Forces" aka FPF**






- 2 Helmholtz centers
- 3 locations
- 158 scientists
- 78 Ph.D. students
- 34 MEUR costs / a
- 42 nationalities (numbers from 2023)





### Changes from PoF IV to PoF V

Foreseen change of the subtopic structure



#### **Fundamental interactions:**

Pushing the limits of our understanding of fundamental interactions

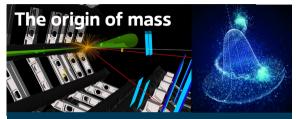
### The origin of mass:

The origin of mass, the flavour puzzle, and the imbalance between matter and anti-matter

### The early universe:

The evolution of the early universe and the nature of the dark sector

Motivation for the change: closer to the science drivers, less thematic overlap between subtopics.


### PoF V subtopic structure and science drivers

Science drivers addressing the big questions of nature: Understanding the quantum universe



Pushing the limits of our understanding of fundamental interactions

- Electroweak (EW) precision and Higgs physics (HH and Higgs potential)
- Strong-field QED
- QCD (incl. lattice and QC)
- Probing extensions of the SM



The origin of mass, the flavour puzzle, and the imbalance between matter and anti-matter

- Dynamics of EW symmetry breaking
- Higgs as portal to new particles
- Top and B and Tau physics
- Charge-parity violation
- Lepton flavor universality



The evolution of the early universe and the nature of the dark sector

- Cosmology (inflation, baryogenesis,...)
- Searches for dark matter candidates (WIMPs, axions, ALPs,...)
- Gravitational waves
- EW phase transition

### PoF V subtopic structure

**Connection to theory and experiments** 

Theory **Axions** 

**Fundamental interactions:** 

Pushing the limits of our understanding of fundamental interactions

### The origin of mass:

The origin of mass, the flavour puzzle, and the imbalance between matter and anti-matter

#### The early universe:

The evolution of the early universe and the nature of the dark sector

Testbeam Facility



Detector Assembly Facility (DAF)



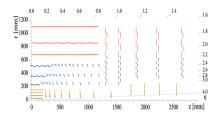
Computing Centres GridKa and IDAF

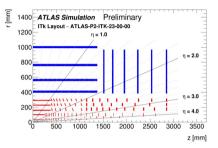


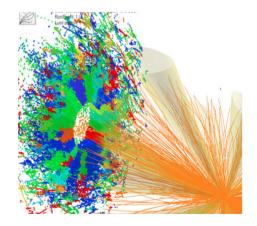
Connection to MT

### **LHC Detector Upgrade Projects**

... will continue to be a major effort in PoF V


#### New trackers for ATLAS and CMS:


- Increased granularity → cope with the dense environment at HL-LHC
- Increased radiation tolerance → cope with the harsh radiation at HL-LHC
- Improved hit resolution for high-pT tracks
- Track trigger (@CMS) → data reduction at trigger readout by factor 10-20
- Extended tracking to the forward region → better access to VBF measurements


#### HGCAL:

- First particle flow calorimeter at a hadron collider, first **precise 5-D calorimeter** with the timing information
- Granularity, radiation hardness, and extended coverage: instrumental for jet physics improving energy resolution and enabling measurements in the forward direction (+ pileup mitigation)
- Key to improving high profile physics topics at HL-LHC → HH, H signatures, VBF, tau signatures, forward flavour-tagging

**DESY acts as a hub** creating links to other institutes in Germany (and internationally)





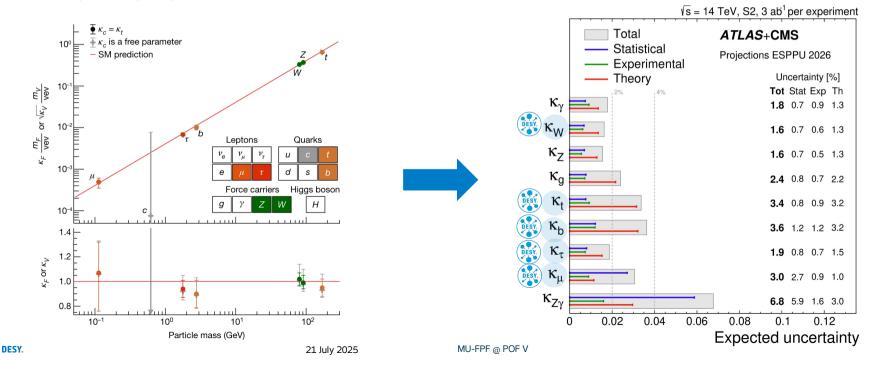


### **LHC Detector Upgrade Projects**

#### ... getting it to work!!!

- Make most of experience of construction at DESY
  - Commissioning (2027-2029)
  - Early data taking (2029-2030)
  - Initial alignment and calibration (2029-2030): profit from existing know-how and test beam experience
  - Initial performance papers (2030-2032) profit from production experience

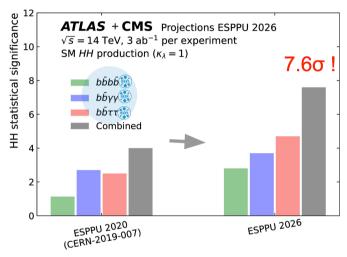
#### Perfect opportunity for young people to "touch the detector" and become real experimentalists


- Profit of the ML papers being written in our groups
  - Reconstruction and low-level expertise at DESY (alignment, particle flow, ...)
  - Be the first/leading to put this in HL-LHC physics analyses
  - Let's show that it works in real life!

### Investigating the detected Higgs boson

How do particles get their mass - by the SM Higgs mechanism or something else?

Measure the Higgs boson couplings as precisely as possible


- → CP odd coupling?
- → Unexpected (BSM) contributions?



### Tackling the di-Higgs production

### Possible for the first time during PoF V!!!

- Probing the Higgs potential and the mechanism of electroweak symmetry breaking!
- Does the Higgs boson couple to itself as we expect?
  - → HL-LHC allows this measurement for the first time!
    - Room for surprises:
       new heavy resonances could enhance cross section!
    - Most sensitive channels are exactly those where DESY profits from expertise on object performance
  - → DESY with both ATLAS and CMS groups is in an excellent position to work on combinations
    - 5σ discovery already with 2 ab<sup>-1</sup>
       (expected in combination of ATLAS and CMS by the end of PoF V)



### Precision tests of the fundamental forces

### **Profiting from new detectors and experiments**

#### ElectroWeak (EW) force:

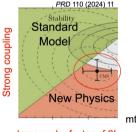
 Measurements of the fundamental parameters, e.g. EW mixing angle (exploiting new forward tracking)

#### QuantumElectroDynamics (QED):

- What happens at the Schwinger limit?
- Goal for PoF V: LUXE up and running, profiting from ELBEX extraction at European XFEL

# PLB 844 (2023) 138103 Running of \$\sin^2\theta\_w\$ in the \$\text{MS}\$ scheme \$\phi\$ \$\sin^2\theta\_w^{\text{MS}}(m\_2)\$, PDG (2022) This work: Projection Projection \$\phi\$ L = 300 fb^-1 \$\frac{1}{2}\$ L = 3ab^-1 energy scale

First measurement


Fusion facility

#### QuantumChromoDynamics (QCD):

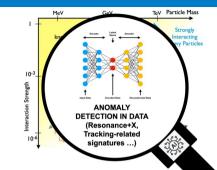
- Precision tests, e.g. measurement of the strong coupling parameter  $\alpha_s$  at the LHC
- Lattice calculations

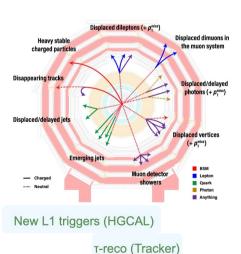
#### Understanding of the content of matter

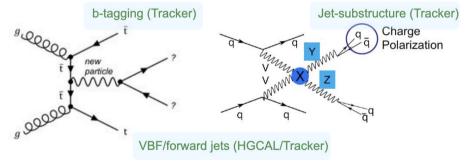
- Measurement of parton distributions
- Common effort of theory and experiment: treat correlations of SM parameters and PDFs in global SMEFT interpretation



Improve by factor of 2!


LUXE


### Bring light into open questions


Focus on new opportunities from our detector upgrades and high luminosity

- Probing the Matter-Antimatter asymmetry
  - → Search for CP violation in the Higgs sector
- Why is the Higgs boson so light?
  - → Search for extensions of the SM, but also for the unknown

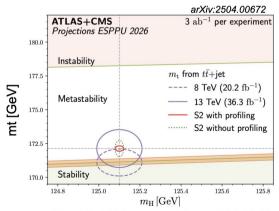
### Subtopic 1: Fundamental interactions



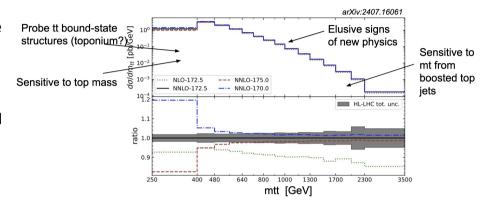




#### Machine learning for


- Object identification
- Background prediction
- Event classification

This broad strategy is sensitive to many BSM scenarios and ready for (positive) surprises at HL-LHC

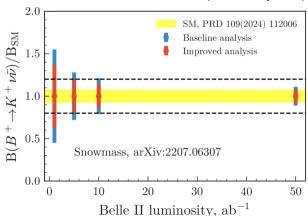

### Pattern in fermion masses?

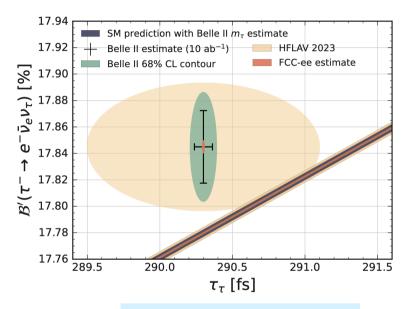
### DESY tackles the 3<sup>rd</sup> generation

- Understanding the top quark and its couplings from the non-relativistic to highly-boosted regime:
  - → Ultimate stress test of the SM and window to BSM
- Deliver the most precise τ mass measurement at Belle II
- Is our Universe stable?
  - → Precise measurement of W and top mass



End HL-LHC mt precision ~ 200 MeV



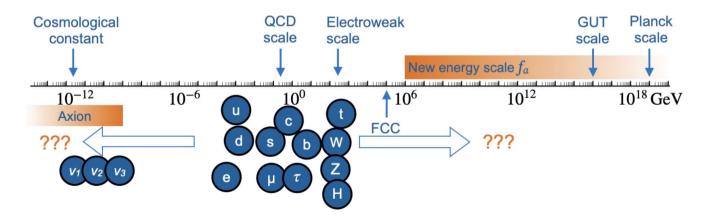


New trackers fundamental

### Difference between the 3 generations?

### ... beyond mass?

- Test lepton flavor universality with  $\tau$  leptons at Belle II
  - Expect significant improvement in lifetime measurement
  - Measure  $\mathcal{B}(\tau \to \ell \nu_{\ell} \nu_{\tau})$  for the first time and challenge the SM
- Testing our predictions for the three generations by measuring **CKM parameters:**  $\alpha$ ,  $\beta$ ,  $|\mathbf{v}_{us}|$
- Measurement of B<sup>+</sup> → K<sup>+</sup> vv: interesting since current measurement higher than SM
  - 5 ab<sup>-1</sup> is sufficient to establish the process (assuming SM)
  - Complement with other channels (B<sup>0</sup> decays, ...)






New PXD pivotal for the lifetime measurement

### The dark side

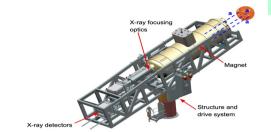
#### ... of the early universe

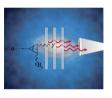
- What is dark matter?
  - If produced in the early universe, it could also be produced at colliders!
  - Is the Higgs boson a portal to dark matter?
  - Axions and axion-like particles are viable candidates (and could be produced in the lab or in the sun)
- What is dark energy?
  - Ultralight (<10<sup>-33</sup> eV) axions could be the dynamical dark energy



### Subtopic 3: The early universe

### Planned axion searches


... at DESY as worldwide reknowned Axion Center


#### BabylAXO

- The next generation state-of-the-art helioscope at DESY
- Sensitivity: ~100x CERN Axion Solar Telescope (CAST)
- Goal: BabylAXO built and taking first data in PoF V

#### MADMAX

- Large resonator from many parallel dielectric disks
- Goal 1: MADMAX prototype cryostat up and running
- Goal 2: Final magnet and cryostat to be installed in PoF V

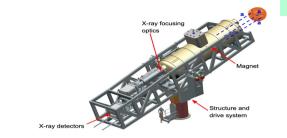






### **Subtopic 3:** The early universe

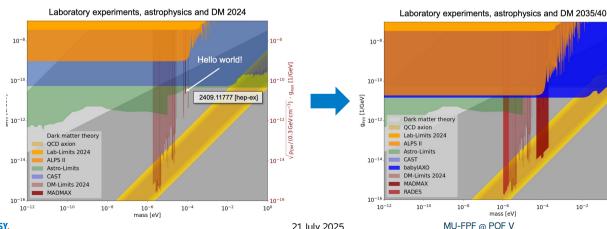
### Planned axion searches


... at DESY as worldwide reknowned Axion Center

#### **BabylAXO**

- The next generation state-of-the-art helioscope at DESY
- Sensitivity: ~100x CERN Axion Solar Telescope (CAST)
- Goal: BabylAXO built and taking first data in PoF V

#### **MADMAX**


- Large resonator from many parallel dielectric disks
- Goal 1: MADMAX prototype cryostat up and running
- Goal 2: Final magnet and cryostat to be installed in PoF V





 $10^{-2}$ 

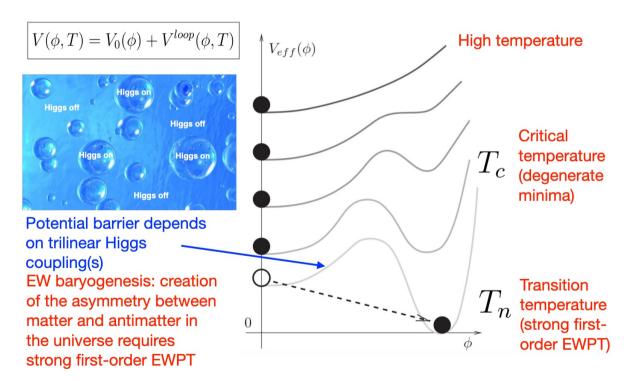




**ALPS II target sensitivity** 

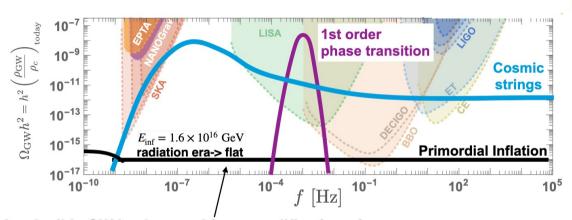
**MADMAX** target sensitivity

**RADES target sensitivity** (using the BabylAXO magnet)

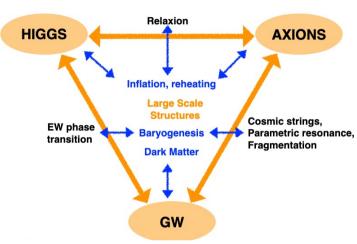

**BabylAXO target sensitivity** 

DESY. 21 July 2025 16

### Higgs potential and EW phase transition

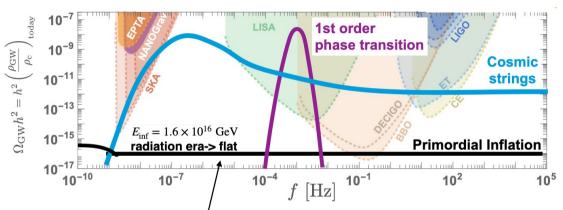

... in the early universe

Temperature evolution of the Higgs potential in the early universe:




### **Gravitational waves**

... as a probe of the early universe

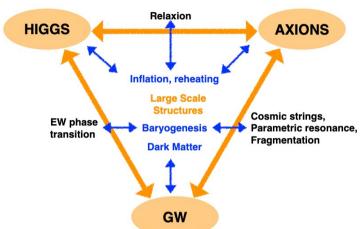



Irreducible GW background from amplification of initial quantum fluctuations of the gravitational field during inflation



### **Gravitational waves**

### ... as a probe of the early universe




Irreducible GW background from amplification of initial quantum fluctuations of the gravitational field during inflation

#### Area of opportunity: test high frequencies

- No known astrophysical objects over O(kHz): search for new physics
- Ongoing R&D projects at DESY to establish technologies and assess feasibility:

SRF cavities (MAGO), levitated sensors, usage of axion infrastructure





### **New projects**

### ...after finishing the big upgrades

### Optimistic scenario: Decision to build FCC-ee by CERN member states still during PoF V

- DESY in prime position:
  - Member of several R&D collaborations
  - Experience in building large scale detectors

### Alternative CERN projects will be on the same timescale

#### Most optimistic timeline for FCC-ee during PoF V:

| Earliest Project Approval by CERN<br>Council                                                      | 2028      |  |  |
|---------------------------------------------------------------------------------------------------|-----------|--|--|
| Call for CDRs, collaboration forming                                                              | 2028      |  |  |
| Construction of system demonstrators;<br>Physics performance studies for<br>detector optimization | 2028-2031 |  |  |
| End of HL-LHC upgrade: more detector experts available                                            | 2029      |  |  |
| 4 <b>Detector CDRs</b> ready                                                                      | 2031      |  |  |
| Production of scalable prototypes                                                                 | 2031-35   |  |  |
| 4 Detector TDRs ready                                                                             | 2035      |  |  |
| Detector component production                                                                     | 2036      |  |  |

**DESY.** 21 July 2025 MU-FPF @ POF V 20

### **New projects**

### ...after finishing the big upgrades → Connection to MT

#### **Detector activities: formally part of MT-DTS and MU-FPF:**

- MT-DTS: Detector R&D
  - Silicon detector R&D: CMOS based Pixel and Strips
  - Silicon photonic transceiver (InnoPool SoPhie)
  - Calorimeter developments
  - Advanced cooling techniques
  - •
- MU-FPF: Detector construction for experiments
  - ATLAS and CMS Phase-2 upgrade
  - Belle-II PXD2 (completed)
  - TES for ALPS
  - In parallel: physics performance and physics-driven detector optimisation for new experiments



Transition from R&D to prototyping and construction involves transition of research programme.

R&D goals in MT-DTS should be aligned with plans in MU-FPF.

### **Topics of interest in MT**

... and connection to DRDs

### Silicon detector development is a strong focus of our interest

- Monolithic CMOS
- Novel sensors (ELAD, digital SiPM, ...)
- Software tool developments
- Involvement in DRD3 (Silicon)

#### Calorimeter developments

- Highly granular SiPM on tile calorimeter
- Involvement in DRD6 (Calo)

#### **Data transfer**

- Silicon photonics
- Advanced interconnects
- Involvement in DRD7 (Electronics)



### Integration

- Detector integration center
- R&D on light weight mechanics, local cooling and cooling systems
- Involvement in DRD8 (Integration)

### **Cryogenic detectors**

- Transition Edge Sensors
- Developments for axion/dark matter experiments
- Involvement in DRD5 (Quantum sensors)

#### Infrastructure

- Detector Assembly Facility
- Test beam





Investigation of other projects

### Recap from last retreat

#### **Consider other projects**

- · that are scientifically interesting
- that fit our expertise
- that cannot be done by a (small) university group
- where DESY can have an impact
- · where the (realistic) timescale fits
- · where DESY can act as German hub

**Cross-Division Synergies** DESY Impact on Project Beware: partly now obsolete by now Physics - Neutrino mpact on Society FH Infrastructure nteresting Tech Physics - Other Gain for DESY FH Expertise **Serman Hub** Realistic Timeline DUNE Hyper-K PD FSS-nu PD nuStorm R&D 0v2b **CEVENS** Short Baseline **FPF** QCD HIKE+SHADOWS+NANU Flav SHIP+SND LDMX LHCb Flav MATHUSLA/Codex/Anubis LUXE NPOD QED Baby-IAXO **MADMAX** IAXO **EDM Storage Ring** 

23

For discussion in the afternoon

### Investigation of other projects

### Focus on Silicon technology

#### **Consider other projects**

- that are scientifically interesting
- that fit our expertise
- that cannot be done by a (small) university group
- where DESY can have an impact
- where the (realistic) timescale fits
- where DESY can act as German hub

|                                 |                            |         |                                 |                  | -                               |                |                          |
|---------------------------------|----------------------------|---------|---------------------------------|------------------|---------------------------------|----------------|--------------------------|
| Experiment                      | Timescale<br>(start run)   | Certain | (MAPS) R&D compatible           | System expertise | Si size                         | DESY involved? | DESY as German<br>hub    |
| P2 Spectrometer<br>@ MESA       | In construction            | yes     | No                              | ?                | small                           | Chip charact.  | EC: Prisma++             |
| INSIGHT<br>@ ELSA               | 2027                       | yes     | No                              | yes              | small                           | no             | EC: Colour meets Flavour |
| LOHENGRIN<br>@ ELSA             | ~2030                      | yes     | Maybe<br>Needs also HCAL        | yes              | 10s cm2                         | no             | EC: Colour meets Flavour |
| LUXE upgrade                    | Middle<br>2030ies          | no      | yes                             | yes              | ~200 cm2                        | On-site        | ?                        |
| Belle-2 tracker upgrade         | 2034<br>Decis. 2028        | no      | Probably not (Obelix)           | yes              | VTX: 10s cm2<br>ITT: several m2 | yes            | yes                      |
| KOTO-2 veto                     | 2034                       | likely  | maybe                           | yes              | 20*20 cm2                       | no             | No?                      |
| KOTO-2 Tracker                  | 2034 or ~8 years later     | no      | One proposal based on MightyPix | yes              | Large, in vacuum                | no             | No?                      |
| LHCb Upgrade 2<br>MightyTracker | 2036                       | yes     | No, will use<br>MightyPix       | yes              | 10s m2                          | no             | yes                      |
| newAstrogam                     | Launch 2041<br>Decis. 2030 | no      | No, will use AstroPix           | yes              | ~10 m2                          | AP project     | ?                        |

#### For discussion in the afternoon

### We need to plan now for new projects

... to be able to capitalize on our experience!

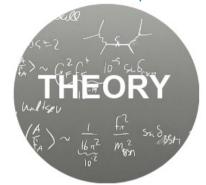
Decades of experience in leading and supporting physics and detector efforts worldwide

- Need to maintain and evolve DESY's position as a German hub
  - In sync with momentum growth in the community
- Capitalise on DESY strengths:
  - In data analysis and the strong link to theory
  - Overall detector concepts and optimisation
  - Software frameworks and integration
  - Detector technology competences and infrastructure

- → Need to continue in a leading role in PoF V, together with German institutes:
  - → in growing number of on-site experiments,
  - → in current off-site experiments and in future experiments at CERN
  - → in possible intermediate projects

More time for discussion in the afternoon

## Backup / further info


### Questions to be answered in the report

- Brief description of challenges, scientific goals and strategic relevance, also in relation with research policy objectives and in the context of international developments.
- Key questions:
  - How would you rate the objectives of the topic with regard to scientific relevance and leadership?
  - Which pressing societal or scientific challenges does it address?
  - How would you rate the topic's potential impact with regard to the research field, its technologies and its societal context?
  - How would you evaluate its alignment with the research policy objectives of the research field (and with the strategy of the program)?
  - Do you envision further objectives that the topic should consider addressing?

### **Towards PoF V**

Focus areas in MU-FPF (Fundamental Partices and Forces)





### **Off-site experiments:**

Key contributions (data analysis, commissioning and operation) to global projects at CERN and KEK:

- ATLAS and CMS
- Belle II

Engage in future collider decision and preparation

New detector project?

#### Theory:

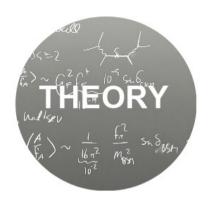
Establish the Wolfgang-Pauli Center as world-leading interdisciplinary center for theoretical physics

Idea factory for future science endeavours

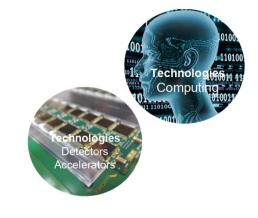


#### **On-site experiments:**

- Planned axion experiments: BabylAXO, MADMAX
- QED at the extreme: LUXE


#### **New ideas:**

- VMB @ ALPS II
- High-frequency GW experiments


### Particle Physics at DESY: the Next 10-15 Years

### **Specific focus areas**









Key contributions to global projects at CERN and KEK

 HL-LHC preparation and running in 2029 onwards

 Belle II: expect ~50/ab by 2034

Engage in planning and preparation for future projects (EPPSU decision by 2028)

Maintain broad and world-leading portfolio.

Establish WPC as world-leading interdisciplinary center for theoretical physics

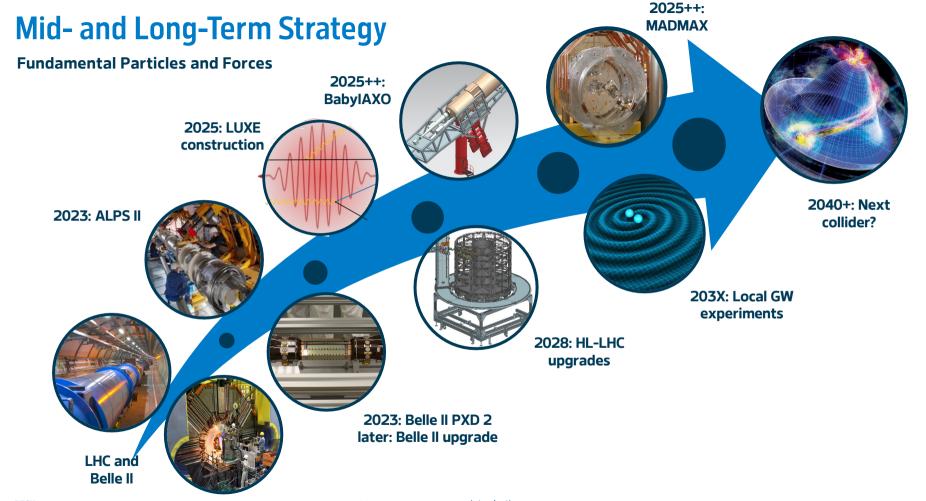
Theory as "Idea factory"

ALPS II: first science run started running in May 2023.

BabylAXO, LUXE: Solve challenges & find financial resources for PoF V

MADMAX: proof concept in prototyping phase & find financial resources

New ideas, e.g. HF GW local experiments (complementing ET)


~50% of topic resources go into technical work!

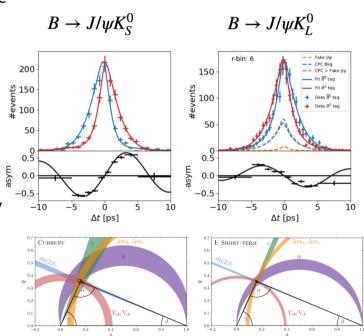
Strengthen innovation in detectors and computing

Increase 3rd party funding

Strengthen exchange across divisions

DESY. 19 June 2025 Introduction




DESY. 19 June 2025 Introduction

### The origin of mass

Testing our predictions for the three generations by measuring CKM parameters

- $\beta$  from decay-time-dependent CP analyses of  $B \rightarrow J/\psi K^0$  decays
  - With 5 ab-1 of data, statistical precision on beta is expected to be competitive with LHCb with 50/fb of data (both LHCb and Belle II analyses will be systematics-limited)
- $\alpha$  from from analysis of  $B \to \rho\rho$ ,  $B \to \pi\pi$ ,  $B \to \rho\pi$  decays
  - Least well known CKM angle so far
  - Belle II will lead the precision
- $|\mathbf{v}_{us}|$  exclusive and inclusive from  $\tau$  decays
  - Value is high when measured in  $\tau$  decays: Cabibbo angle anomaly
  - As a  $\tau$  factory, Belle II is uniquely placed to address this issue

PXD fundamental in controlling resolution function systematics

